Open ShelbyJenkins opened 1 month ago
I need to test out the version of cuda specified in the docker container and if that doesn't work I will test the benchmark following the instructions from the announcement linked above.
Updated to the same docker image but not the dockerfile. No changes.
This reports mistral.rs as being faster than llama.cpp: https://github.com/EricLBuehler/mistral.rs/discussions/612
But I'm seeing much slower speeds for the same prompt/settings.
Mistral.rs
Usage { completion_tokens: 501, prompt_tokens: 28, total_tokens: 529, avg_tok_per_sec: 16.980707, avg_prompt_tok_per_sec: 76.08695, avg_compl_tok_per_sec: 16.27416, total_time_sec: 31.153, total_prompt_time_sec: 0.368, total_completion_time_sec: 30.785 }
llama.cpp
timings: {\"predicted_ms\": 4007.64, \"prompt_per_token_ms\": 0.7041786, \"predicted_per_token_ms\": 8.01528, \"prompt_ms\": 19.717, \"prompt_per_second\": 1420.0944, \"predicted_n\": 500.0, \"prompt_n\": 28.0, \"predicted_per_second\": 124.7617},
The code I'm using to init mistral.rs: https://github.com/ShelbyJenkins/llm_client/blob/b1edca89bbdc34b884907fd39be6eedabf10d81b/src/llm_backends/mistral_rs/builder.rs#L110
I'm using the basic completion tests here: https://github.com/ShelbyJenkins/llm_client/blob/b1edca89bbdc34b884907fd39be6eedabf10d81b/src/basic_completion.rs#L158
Testing on ubuntu running an ubuntu docker container (FROM nvidia/cuda:12.3.2-cudnn9-devel-ubuntu22.04). I've tried loading the layers on to a single GPU using the device dummy map, and loading on both GPUs using the device mapper. These are 3090s and testing is done with Phi 3 mini.