Closed ErikNixdorf closed 8 months ago
Solved with b4c27fa
While looking into Example 3, I noticed sbat.gauges_meta
does not group gauges together that contain NaN
values. I suggest we keep them together.
Consider the following output of
sbat.gauges_meta["balance"]
gauge decade
[...]
schoenfeld 1995 0.167932
2005 0.033757
schoeps 2005 0.187361
2015 0.180896
2025 0.093814
[...]
vetschau 1995 0.495314
2005 0.154159
2015 0.320815
2025 0.159062
goeritz_nr_195 2025 NaN
hammerstadt_1 1995 NaN
2005 NaN
heinersbrueck 2025 NaN
merzdorf_2 2025 NaN
neusalza_spremberg 1995 NaN
2005 NaN
niedergurig 2025 NaN
radensdorf_1 2025 NaN
radensdorf_2 2025 NaN
reichwalde_3 1995 NaN
2005 NaN
schoenfeld 2015 NaN
2025 NaN
schoeps 1995 NaN
Name: balance, dtype: float64
As you can see all gauges with NaNs for a specific decade are at the bottom of the dataframe. I think it would be better to group the gauges together. A quick solution is to stack and unstack, but it would be better to solve this at the location where the grouping operation is performed.
sbat.gauges_meta = sbat.gauges_meta.reindex(balance_mean, axis=0)
gauge decade
[...]
reichwalde_3 1995 NaN
2005 NaN
2015 0.200459
2025 0.256693
saerichen 1995 0.202526
2005 0.179485
2015 0.256454
2025 0.110422
schirgiswalde 1995 0.852514
2005 0.633872
2015 0.474817
2025 -0.014877
schmogrow_einlasswehr_nr_vi_up 1995 4.621551
2005 0.662170
2015 4.205882
2025 0.601407
schmogrow_spreewehr_nr_vii_up 1995 -1.612786
2005 -1.787368
2015 -1.387917
2025 -1.019507
schoenfeld 1995 0.167932
2005 0.033757
2015 NaN
2025 NaN
schoeps 1995 NaN
2005 0.187361
2015 0.180896
2025 0.093814
[...]
Name: balance, dtype: float64
While looking at the element comparison warning, I noticed the column order of
gauge_data
is arbitrary each run. I don't know if it propagates on final results, but it should be the same for each run. I guess the apply operation on the grouped DataFrame is a bit complex.Originally posted by @MarcoHannemann in https://github.com/ErikNixdorf/sbat/issues/24#issuecomment-1479091599