Closed cnu1439 closed 2 years ago
I think this due to the Unet structure, the input img size must be guaranteed to be divided by 2^n (n is the number of unet layers).
yeah. got it. working now. thanks for the reply.
To be more accurate, the image height and width should be evenly divided by 32.
Hi, thanks for the code. When i was testing with pre-trained models with test image I'm getting following error. Attaching test image. Thanks.
(prn_test) dev@linux:/workspace/planerecnet$ python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth --image=test.jpg:/workspace/test.jpg Inference image: test.jpg torch.Size([425, 640, 3]) test.jpg /home/dev/miniconda/envs/prn_test/lib/python3.9/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /opt/conda/conda-bld/pytorch_1634272204863/work/aten/src/ATen/native/TensorShape.cpp:2157.) return _VF.meshgrid(tensors, kwargs) # type: ignore[attr-defined] torch.Size([1, 128, 107, 160]) torch.Size([1, 128, 108, 160]) Traceback (most recent call last): File "/workspace/planerecnet/simple_inference.py", line 357, in
inference_image(net, inp, out, depth_mode=args.depth_mode)
File "/workspace/planerecnet/simple_inference.py", line 154, in inference_image
results = net(batch)
File "/home/dev/miniconda/envs/prn_test/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, *kwargs)
File "/workspace/planerecnet/planerecnet.py", line 93, in forward
mask_pred = self.mask_head(mask_features)
File "/home/dev/miniconda/envs/prn_test/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(input, kwargs)
File "/workspace/planerecnet/planerecnet.py", line 494, in forward
feature_add_all_level += self.convs_all_levelsi
RuntimeError: The size of tensor a (107) must match the size of tensor b (108) at non-singleton dimension 2