EveryVoiceTTS / EveryVoice

The EveryVoice TTS Toolkit - Text To Speech for your language
https://docs.everyvoice.ca
Other
21 stars 2 forks source link

Unable to lower the the number of mels #121

Closed SamuelLarkin closed 1 year ago

SamuelLarkin commented 1 year ago

I wanted to create a micro model for #57 but it seems that there are some hardcoded values that can't be changed from a config file.

everyvoice train text-to-spec config/everyvoice-text-to-spec.yaml
       │ File: config/everyvoice-shared-data.yaml
───────┼──────────────────────────────────────────────────────────────────────────────
   1   │ audio: {alignment_bit_depth: 16, alignment_sampling_rate: 22050, f_max: 8000, f_min: 0,
   2   │   fft_hop_frames: 4, fft_window_frames: 16, input_sampling_rate: 22050, max_audio_length: 11.0,
   3   │   max_wav_value: 32767.0, min_audio_length: 0.4, n_fft: 16, n_mels: 6, norm_db: -3.0,
   4   │   output_sampling_rate: 22050, sil_duration: 0.1, sil_threshold: 1.0, spec_type: mel-librosa,
   5   │   target_bit_depth: 16, vocoder_segment_size: 32}
RuntimeError: Given groups=1, weight of size [12, 6, 3], expected input[1, 80, 833] to have 6 channels, but got 80 channels instead

Traceback

╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /fs/hestia_Hnrc/ict/sam037/git/EveryVoice/everyvoice/model/feature_prediction/FastSpeech2_lightn │
│ ing/fs2/cli.py:201 in train                                                                      │
│                                                                                                  │
│   198 │   from .dataset import FastSpeech2DataModule                                             │
│   199 │   from .model import FastSpeech2                                                         │
│   200 │                                                                                          │
│ ❱ 201 │   train_base_command(                                                                    │
│   202 │   │   model_config=FastSpeech2Config,  # type: ignore                                    │
│   203 │   │   model=FastSpeech2,  # type: ignore                                                 │
│   204 │   │   data_module=FastSpeech2DataModule,  # type: ignore                                 │
│                                                                                                  │
│ /fs/hestia_Hnrc/ict/sam037/git/EveryVoice/everyvoice/base_cli/helpers.py:161 in                  │
│ train_base_command                                                                               │
│                                                                                                  │
│   158 │   if last_ckpt is None:                                                                  │
│   159 │   │   model_obj = model(config)                                                          │
│   160 │   │   tensorboard_logger.log_hyperparams(config.model_dump())                            │
│ ❱ 161 │   │   trainer.fit(model_obj, data)                                                       │
│   162 │   else:                                                                                  │
│   163 │   │   model_obj = model.load_from_checkpoint(last_ckpt)                                  │
│   164 │   │   # Check if the trainer has changed (but ignore subdir since it is specific to th   │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/trainer/traine │
│ r.py:582 in fit                                                                                  │
│                                                                                                  │
│    579 │   │   if not isinstance(model, pl.LightningModule):                                     │
│    580 │   │   │   raise TypeError(f"`Trainer.fit()` requires a `LightningModule`, got: {model.  │
│    581 │   │   self.strategy._lightning_module = model                                           │
│ ❱  582 │   │   call._call_and_handle_interrupt(                                                  │
│    583 │   │   │   self, self._fit_impl, model, train_dataloaders, val_dataloaders, datamodule,  │
│    584 │   │   )                                                                                 │
│    585                                                                                           │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/trainer/call.p │
│ y:36 in _call_and_handle_interrupt                                                               │
│                                                                                                  │
│   33 │   """                                                                                     │
│   34 │   try:                                                                                    │
│   35 │   │   if trainer.strategy.launcher is not None:                                           │
│ ❱ 36 │   │   │   return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer,     │
│   37 │   │   else:                                                                               │
│   38 │   │   │   return trainer_fn(*args, **kwargs)                                              │
│   39                                                                                             │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/strategies/lau │
│ nchers/subprocess_script.py:90 in launch                                                         │
│                                                                                                  │
│    87 │   │   """                                                                                │
│    88 │   │   if not self.cluster_environment.creates_processes_externally:                      │
│    89 │   │   │   self._call_children_scripts()                                                  │
│ ❱  90 │   │   return function(*args, **kwargs)                                                   │
│    91 │                                                                                          │
│    92 │   def _call_children_scripts(self) -> None:                                              │
│    93 │   │   # bookkeeping of spawned processes                                                 │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/trainer/traine │
│ r.py:624 in _fit_impl                                                                            │
│                                                                                                  │
│    621 │   │   │   model_provided=True,                                                          │
│    622 │   │   │   model_connected=self.lightning_module is not None,                            │
│    623 │   │   )                                                                                 │
│ ❱  624 │   │   self._run(model, ckpt_path=self.ckpt_path)                                        │
│    625 │   │                                                                                     │
│    626 │   │   assert self.state.stopped                                                         │
│    627 │   │   self.training = False                                                             │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/trainer/traine │
│ r.py:1061 in _run                                                                                │
│                                                                                                  │
│   1058 │   │                                                                                     │
│   1059 │   │   self._checkpoint_connector.resume_end()                                           │
│   1060 │   │                                                                                     │
│ ❱ 1061 │   │   results = self._run_stage()                                                       │
│   1062 │   │                                                                                     │
│   1063 │   │   log.detail(f"{self.__class__.__name__}: trainer tearing down")                    │
│   1064 │   │   self._teardown()                                                                  │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/trainer/traine │
│ r.py:1140 in _run_stage                                                                          │
│                                                                                                  │
│   1137 │   │   │   return self._run_evaluate()                                                   │
│   1138 │   │   if self.predicting:                                                               │
│   1139 │   │   │   return self._run_predict()                                                    │
│ ❱ 1140 │   │   self._run_train()                                                                 │
│   1141 │                                                                                         │
│   1142 │   def _pre_training_routine(self) -> None:                                              │
│   1143 │   │   # wait for all to join if on distributed                                          │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/trainer/traine │
│ r.py:1153 in _run_train                                                                          │
│                                                                                                  │
│   1150 │   │   self._pre_training_routine()                                                      │
│   1151 │   │                                                                                     │
│   1152 │   │   with isolate_rng():                                                               │
│ ❱ 1153 │   │   │   self._run_sanity_check()                                                      │
│   1154 │   │                                                                                     │
│   1155 │   │   # enable train mode                                                               │
│   1156 │   │   assert self.model is not None                                                     │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/trainer/traine │
│ r.py:1225 in _run_sanity_check                                                                   │
│                                                                                                  │
│   1222 │   │   │                                                                                 │
│   1223 │   │   │   # run eval step                                                               │
│   1224 │   │   │   with torch.no_grad():                                                         │
│ ❱ 1225 │   │   │   │   val_loop.run()                                                            │
│   1226 │   │   │                                                                                 │
│   1227 │   │   │   self._call_callback_hooks("on_sanity_check_end")                              │
│   1228                                                                                           │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/loops/loop.py: │
│ 199 in run                                                                                       │
│                                                                                                  │
│   196 │   │   while not self.done:                                                               │
│   197 │   │   │   try:                                                                           │
│   198 │   │   │   │   self.on_advance_start(*args, **kwargs)                                     │
│ ❱ 199 │   │   │   │   self.advance(*args, **kwargs)                                              │
│   200 │   │   │   │   self.on_advance_end()                                                      │
│   201 │   │   │   │   self._restarting = False                                                   │
│   202 │   │   │   except StopIteration:                                                          │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/loops/dataload │
│ er/evaluation_loop.py:152 in advance                                                             │
│                                                                                                  │
│   149 │   │   kwargs = OrderedDict()                                                             │
│   150 │   │   if self.num_dataloaders > 1:                                                       │
│   151 │   │   │   kwargs["dataloader_idx"] = dataloader_idx                                      │
│ ❱ 152 │   │   dl_outputs = self.epoch_loop.run(self._data_fetcher, dl_max_batches, kwargs)       │
│   153 │   │                                                                                      │
│   154 │   │   # store batch level output per dataloader                                          │
│   155 │   │   self._outputs.append(dl_outputs)                                                   │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/loops/loop.py: │
│ 199 in run                                                                                       │
│                                                                                                  │
│   196 │   │   while not self.done:                                                               │
│   197 │   │   │   try:                                                                           │
│   198 │   │   │   │   self.on_advance_start(*args, **kwargs)                                     │
│ ❱ 199 │   │   │   │   self.advance(*args, **kwargs)                                              │
│   200 │   │   │   │   self.on_advance_end()                                                      │
│   201 │   │   │   │   self._restarting = False                                                   │
│   202 │   │   │   except StopIteration:                                                          │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/loops/epoch/ev │
│ aluation_epoch_loop.py:137 in advance                                                            │
│                                                                                                  │
│   134 │   │   self.batch_progress.increment_started()                                            │
│   135 │   │                                                                                      │
│   136 │   │   # lightning module methods                                                         │
│ ❱ 137 │   │   output = self._evaluation_step(**kwargs)                                           │
│   138 │   │   output = self._evaluation_step_end(output)                                         │
│   139 │   │                                                                                      │
│   140 │   │   self.batch_progress.increment_processed()                                          │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/loops/epoch/ev │
│ aluation_epoch_loop.py:234 in _evaluation_step                                                   │
│                                                                                                  │
│   231 │   │   │   the outputs of the step                                                        │
│   232 │   │   """                                                                                │
│   233 │   │   hook_name = "test_step" if self.trainer.testing else "validation_step"             │
│ ❱ 234 │   │   output = self.trainer._call_strategy_hook(hook_name, *kwargs.values())             │
│   235 │   │                                                                                      │
│   236 │   │   return output                                                                      │
│   237                                                                                            │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/trainer/traine │
│ r.py:1443 in _call_strategy_hook                                                                 │
│                                                                                                  │
│   1440 │   │   │   return                                                                        │
│   1441 │   │                                                                                     │
│   1442 │   │   with self.profiler.profile(f"[Strategy]{self.strategy.__class__.__name__}.{hook_  │
│ ❱ 1443 │   │   │   output = fn(*args, **kwargs)                                                  │
│   1444 │   │                                                                                     │
│   1445 │   │   # restore current_fx when nested context                                          │
│   1446 │   │   pl_module._current_fx_name = prev_fx_name                                         │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/strategies/ddp │
│ .py:360 in validation_step                                                                       │
│                                                                                                  │
│   357 │   │   │   assert self.model is not None                                                  │
│   358 │   │   │   if self.lightning_module.trainer.state.fn == TrainerFn.FITTING:                │
│   359 │   │   │   │   # used when calling `trainer.fit`                                          │
│ ❱ 360 │   │   │   │   return self.model(*args, **kwargs)                                         │
│   361 │   │   │   else:                                                                          │
│   362 │   │   │   │   # used when calling `trainer.validate`                                     │
│   363 │   │   │   │   assert isinstance(self.model, ValidationStep)                              │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/modules/module.py:1194  │
│ in _call_impl                                                                                    │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/parallel/distributed.py │
│ :1040 in forward                                                                                 │
│                                                                                                  │
│   1037 │   │   │   │   # Notify joined ranks whether they should sync in backwards pass or not.  │
│   1038 │   │   │   │   self._check_global_requires_backward_grad_sync(is_joined_rank=False)      │
│   1039 │   │   │                                                                                 │
│ ❱ 1040 │   │   │   output = self._run_ddp_forward(*inputs, **kwargs)                             │
│   1041 │   │   │                                                                                 │
│   1042 │   │   │   # sync params according to location (before/after forward) user               │
│   1043 │   │   │   # specified as part of hook, if hook was specified.                           │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/parallel/distributed.py │
│ :1003 in _run_ddp_forward                                                                        │
│                                                                                                  │
│   1000 │   │   │   │   return module_to_run(*inputs[0], **kwargs[0])                             │
│   1001 │   │   else:                                                                             │
│   1002 │   │   │   with self._inside_ddp_forward():                                              │
│ ❱ 1003 │   │   │   │   return module_to_run(*inputs, **kwargs)                                   │
│   1004 │                                                                                         │
│   1005 │   def forward(self, *inputs, **kwargs):                                                 │
│   1006 │   │   with torch.autograd.profiler.record_function("DistributedDataParallel.forward"):  │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/modules/module.py:1194  │
│ in _call_impl                                                                                    │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/pytorch_lightning/overrides/base │
│ .py:110 in forward                                                                               │
│                                                                                                  │
│   107 │   │   │   if trainer.testing:                                                            │
│   108 │   │   │   │   return self._forward_module.test_step(*inputs, **kwargs)                   │
│   109 │   │   │   if trainer.sanity_checking or trainer.validating:                              │
│ ❱ 110 │   │   │   │   return self._forward_module.validation_step(*inputs, **kwargs)             │
│   111 │   │   │   if trainer.predicting:                                                         │
│   112 │   │   │   │   return self._forward_module.predict_step(*inputs, **kwargs)                │
│   113 │   │   return self._forward_module(*inputs, **kwargs)                                     │
│                                                                                                  │
│ /fs/hestia_Hnrc/ict/sam037/git/EveryVoice/everyvoice/model/feature_prediction/FastSpeech2_lightn │
│ ing/fs2/model.py:242 in validation_step                                                          │
│                                                                                                  │
│   239 │   │   │   │   │   self.global_step,                                                      │
│   240 │   │   │   │   │   gt_sr,                                                                 │
│   241 │   │   │   │   )                                                                          │
│ ❱ 242 │   │   output = self(batch)                                                               │
│   243 │   │   if batch_idx == 0:                                                                 │
│   244 │   │   │   # Currently only plots the first one, but the function is writte to support    │
│   245 │   │   │   if self.config.model.learn_alignment:                                          │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/modules/module.py:1194  │
│ in _call_impl                                                                                    │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /fs/hestia_Hnrc/ict/sam037/git/EveryVoice/everyvoice/model/feature_prediction/FastSpeech2_lightn │
│ ing/fs2/model.py:136 in forward                                                                  │
│                                                                                                  │
│   133 │   │   │   x = x + lang_emb.unsqueeze(1)                                                  │
│   134 │   │                                                                                      │
│   135 │   │   # VarianceAdaptor out                                                              │
│ ❱ 136 │   │   variance_adaptor_out = self.variance_adaptor(                                      │
│   137 │   │   │   inputs, x, batch, src_mask, control, inference=inference                       │
│   138 │   │   )                                                                                  │
│   139 │   │   # Create inference Mel lens                                                        │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/modules/module.py:1194  │
│ in _call_impl                                                                                    │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /fs/hestia_Hnrc/ict/sam037/git/EveryVoice/everyvoice/model/feature_prediction/FastSpeech2_lightn │
│ ing/fs2/variance_adaptor.py:249 in forward                                                       │
│                                                                                                  │
│   246 │   │   │   # make sure to do the alignments before folding                                │
│   247 │   │   │   attn_mask = src_mask[..., None] == 0                                           │
│   248 │   │   │   # attn_mask should be 1 for unused timesteps in the text_enc_w_spkvec tensor   │
│ ❱ 249 │   │   │   attn_soft, attn_logprob = self.attention(                                      │
│   250 │   │   │   │   batch["mel"].transpose(1, 2),                                              │
│   251 │   │   │   │   text_emb.transpose(1, 2),                                                  │
│   252 │   │   │   │   batch["mel_lens"],                                                         │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/modules/module.py:1194  │
│ in _call_impl                                                                                    │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /fs/hestia_Hnrc/ict/sam037/git/EveryVoice/everyvoice/model/feature_prediction/FastSpeech2_lightn │
│ ing/fs2/attention.py:224 in forward                                                              │
│                                                                                                  │
│   221 │   │   │   if self.align_query_enc_type == "inv_conv":                                    │
│   222 │   │   │   │   queries_enc, _ = self.query_proj(queries)                                  │
│   223 │   │   │   elif self.align_query_enc_type == "3xconv":                                    │
│ ❱ 224 │   │   │   │   queries_enc = self.query_proj(queries)                                     │
│   225 │   │   │   │   # log_det_W = 0.0                                                          │
│   226 │   │   │   else:                                                                          │
│   227 │   │   │   │   queries_enc, _ = self.query_proj(queries)                                  │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/modules/module.py:1194  │
│ in _call_impl                                                                                    │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/modules/container.py:20 │
│ 4 in forward                                                                                     │
│                                                                                                  │
│   201 │   # with Any as TorchScript expects a more precise type                                  │
│   202 │   def forward(self, input):                                                              │
│   203 │   │   for module in self:                                                                │
│ ❱ 204 │   │   │   input = module(input)                                                          │
│   205 │   │   return input                                                                       │
│   206 │                                                                                          │
│   207 │   def append(self, module: Module) -> 'Sequential':                                      │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/modules/module.py:1194  │
│ in _call_impl                                                                                    │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /fs/hestia_Hnrc/ict/sam037/git/EveryVoice/everyvoice/model/feature_prediction/FastSpeech2_lightn │
│ ing/fs2/attention.py:53 in forward                                                               │
│                                                                                                  │
│    50 │   │   )                                                                                  │
│    51 │                                                                                          │
│    52 │   def forward(self, signal):                                                             │
│ ❱  53 │   │   conv_signal = self.conv(signal)                                                    │
│    54 │   │   return conv_signal                                                                 │
│    55                                                                                            │
│    56                                                                                            │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/modules/module.py:1194  │
│ in _call_impl                                                                                    │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/modules/conv.py:313 in  │
│ forward                                                                                          │
│                                                                                                  │
│    310 │   │   │   │   │   │   self.padding, self.dilation, self.groups)                         │
│    311 │                                                                                         │
│    312 │   def forward(self, input: Tensor) -> Tensor:                                           │
│ ❱  313 │   │   return self._conv_forward(input, self.weight, self.bias)                          │
│    314                                                                                           │
│    315                                                                                           │
│    316 class Conv2d(_ConvNd):                                                                    │
│                                                                                                  │
│ /home/sam037/.conda/envs/EveryVoice/lib/python3.9/site-packages/torch/nn/modules/conv.py:309 in  │
│ _conv_forward                                                                                    │
│                                                                                                  │
│    306 │   │   │   return F.conv1d(F.pad(input, self._reversed_padding_repeated_twice, mode=sel  │
│    307 │   │   │   │   │   │   │   weight, bias, self.stride,                                    │
│    308 │   │   │   │   │   │   │   _single(0), self.dilation, self.groups)                       │
│ ❱  309 │   │   return F.conv1d(input, weight, bias, self.stride,                                 │
│    310 │   │   │   │   │   │   self.padding, self.dilation, self.groups)                         │
│    311 │                                                                                         │
│    312 │   def forward(self, input: Tensor) -> Tensor:                                           │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
roedoejet commented 1 year ago

you probably ran the preprocessing with the 80 mel configuration?

roedoejet commented 1 year ago

you would need to re-process it if you change the way the spectrogram is created