Open ohahaps2 opened 1 month ago
pip install requirements.txt后新的错误又出来了.
rope_scaling
must be a dictionary with two fields, type
and factor
, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}
Exception Message: rope_scaling
must be a dictionary with two fields, type
and factor
, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}
File "H:\sd3\ComfyUI\execution.py", line 323, in execute
output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\execution.py", line 198, in get_output_data
return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\execution.py", line 169, in _map_node_over_list
process_inputs(input_dict, i)
File "H:\sd3\ComfyUI\execution.py", line 158, in process_inputs
results.append(getattr(obj, func)(**inputs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 374, in generate
text_model = joy_two_pipeline.llm.load_llm_model(joy_two_pipeline.model)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 172, in load_llm_model
text_model = AutoModelForCausalLM.from_pretrained(text_model_path,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\auto\auto_factory.py", line 523, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\auto\configuration_auto.py", line 958, in from_pretrained
return config_class.from_dict(config_dict, **unused_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\configuration_utils.py", line 768, in from_dict
config = cls(**config_dict)
^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\llama\configuration_llama.py", line 161, in __init__
self._rope_scaling_validation()
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\llama\configuration_llama.py", line 182, in _rope_scaling_validation
raise ValueError(
2024-10-12 20:19:38,924 - root - INFO - got prompt
2024-10-12 20:19:40,746 - root - INFO - Requested to load SiglipVisionTransformer
2024-10-12 20:19:40,747 - root - INFO - Loading 1 new model
2024-10-12 20:19:41,034 - root - INFO - loaded completely 0.0 1618.345947265625 True
2024-10-12 20:19:41,569 - root - INFO - Requested to load ImageAdapter
2024-10-12 20:19:41,569 - root - INFO - Loading 1 new model
2024-10-12 20:19:41,583 - root - INFO - loaded completely 0.0 82.078125 True
2024-10-12 20:19:41,937 - root - ERROR - !!! Exception during processing !!! rope_scaling
must be a dictionary with two fields, type
and factor
, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}
2024-10-12 20:19:41,940 - root - ERROR - Traceback (most recent call last):
File "H:\sd3\ComfyUI\execution.py", line 323, in execute
output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\execution.py", line 198, in get_output_data
return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\execution.py", line 169, in _map_node_over_list
process_inputs(input_dict, i)
File "H:\sd3\ComfyUI\execution.py", line 158, in process_inputs
results.append(getattr(obj, func)(inputs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 374, in generate
text_model = joy_two_pipeline.llm.load_llm_model(joy_two_pipeline.model)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 172, in load_llm_model
text_model = AutoModelForCausalLM.from_pretrained(text_model_path,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\auto\auto_factory.py", line 523, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\auto\configuration_auto.py", line 958, in from_pretrained
return config_class.from_dict(config_dict, unused_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\configuration_utils.py", line 768, in from_dict
config = cls(**config_dict)
^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\llama\configuration_llama.py", line 161, in init
self._rope_scaling_validation()
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\llama\configuration_llama.py", line 182, in _rope_scaling_validation
raise ValueError(
ValueError: rope_scaling
must be a dictionary with two fields, type
and factor
, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}
2024-10-12 20:19:41,943 - root - INFO - Prompt executed in 3.00 seconds
2024-10-12 20:20:47,288 - root - INFO - got prompt
2024-10-12 20:20:47,538 - root - ERROR - !!! Exception during processing !!! rope_scaling
must be a dictionary with two fields, type
and factor
, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}
2024-10-12 20:20:47,539 - root - ERROR - Traceback (most recent call last):
File "H:\sd3\ComfyUI\execution.py", line 323, in execute
output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\execution.py", line 198, in get_output_data
return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\execution.py", line 169, in _map_node_over_list
process_inputs(input_dict, i)
File "H:\sd3\ComfyUI\execution.py", line 158, in process_inputs
results.append(getattr(obj, func)(inputs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 374, in generate
text_model = joy_two_pipeline.llm.load_llm_model(joy_two_pipeline.model)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 172, in load_llm_model
text_model = AutoModelForCausalLM.from_pretrained(text_model_path,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\auto\auto_factory.py", line 523, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\auto\configuration_auto.py", line 958, in from_pretrained
return config_class.from_dict(config_dict, unused_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\configuration_utils.py", line 768, in from_dict
config = cls(**config_dict)
^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\llama\configuration_llama.py", line 161, in init
self._rope_scaling_validation()
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\llama\configuration_llama.py", line 182, in _rope_scaling_validation
raise ValueError(
ValueError: rope_scaling
must be a dictionary with two fields, type
and factor
, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}
2024-10-12 20:20:47,540 - root - INFO - Prompt executed in 0.23 seconds
2024-10-12 20:21:45,770 - root - INFO - got prompt
2024-10-12 20:21:45,928 - root - ERROR - !!! Exception during processing !!! rope_scaling
must be a dictionary with two fields, type
and factor
, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}
2024-10-12 20:21:45,929 - root - ERROR - Traceback (most recent call last):
File "H:\sd3\ComfyUI\execution.py", line 323, in execute
output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\execution.py", line 198, in get_output_data
return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\execution.py", line 169, in _map_node_over_list
process_inputs(input_dict, i)
File "H:\sd3\ComfyUI\execution.py", line 158, in process_inputs
results.append(getattr(obj, func)(inputs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 374, in generate
text_model = joy_two_pipeline.llm.load_llm_model(joy_two_pipeline.model)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 172, in load_llm_model
text_model = AutoModelForCausalLM.from_pretrained(text_model_path,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\auto\auto_factory.py", line 523, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\auto\configuration_auto.py", line 958, in from_pretrained
return config_class.from_dict(config_dict, unused_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\configuration_utils.py", line 768, in from_dict
config = cls(**config_dict)
^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\llama\configuration_llama.py", line 161, in init
self._rope_scaling_validation()
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\llama\configuration_llama.py", line 182, in _rope_scaling_validation
raise ValueError(
ValueError: rope_scaling
must be a dictionary with two fields, type
and factor
, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}
2024-10-12 20:21:45,931 - root - INFO - Prompt executed in 0.14 seconds
2024-10-12 20:23:21,945 - root - INFO - got prompt
2024-10-12 20:23:22,178 - root - ERROR - !!! Exception during processing !!! rope_scaling
must be a dictionary with two fields, type
and factor
, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}
2024-10-12 20:23:22,179 - root - ERROR - Traceback (most recent call last):
File "H:\sd3\ComfyUI\execution.py", line 323, in execute
output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\execution.py", line 198, in get_output_data
return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\execution.py", line 169, in _map_node_over_list
process_inputs(input_dict, i)
File "H:\sd3\ComfyUI\execution.py", line 158, in process_inputs
results.append(getattr(obj, func)(inputs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 374, in generate
text_model = joy_two_pipeline.llm.load_llm_model(joy_two_pipeline.model)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 172, in load_llm_model
text_model = AutoModelForCausalLM.from_pretrained(text_model_path,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\auto\auto_factory.py", line 523, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\auto\configuration_auto.py", line 958, in from_pretrained
return config_class.from_dict(config_dict, unused_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\configuration_utils.py", line 768, in from_dict
config = cls(**config_dict)
^^^^^^^^^^^^^^^^^^
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\llama\configuration_llama.py", line 161, in init
self._rope_scaling_validation()
File "H:\sd3\python_embeded\Lib\site-packages\transformers\models\llama\configuration_llama.py", line 182, in _rope_scaling_validation
raise ValueError(
ValueError: rope_scaling
must be a dictionary with two fields, type
and factor
, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}
2024-10-12 20:23:22,181 - root - INFO - Prompt executed in 0.21 seconds
## Attached Workflow
Please make sure that workflow does not contain any sensitive information such as API keys or passwords.
你这里感觉应该是模型下载不完整之类的问题,建议从国内镜像下载整个目录下的文件,再复制到指定目录下,我截图里有确定的位置的,你再试试
这个不用下吧,看你说用那个bnb-4bit小显存,我就没下载那个大的 “”“把整个文件夹内的内容复制到 models\LLM\Meta-Llama-3.1-8B-Instruct-bnb-4bit 下
输入类型(torch.cuda.HalfTensor)和权重类型(torch.FloatTensor)应该相同,大佬,这是啥问题?
全部重新下载了 还是一样的报第二个错。
![Uploading 微信截图_20241013013201.png…]()
我照网上的办法 修改了models\clip\siglip-so400m-patch14-384\config.json "rms_norm_eps": 1e-05, "rope_scaling": { "factor": 8.0, "type": "dynamic" 就能正常工作了 ,说是transformers新版本 rope_scaling 一些参数变了。
ComfyUI Error Report ComfyUI 错误报告
Error Details 错误详情
- Node Type: Joy_caption_two节点类型: Joy_caption_two
- Exception Type: RuntimeError异常类型:运行时错误
- Exception Message: Input type (torch.cuda.HalfTensor) and weight type (torch.FloatTensor) should be the same异常消息:输入类型(torch.cuda.HalfTensor)和权重类型(torch.FloatTensor)应保持一致
Stack Trace 堆栈跟踪
![Uploading 微信截图_20241013013201.png…]()
你的截图看不到呀,这个应该是系统默认的创建张量类型不一致导致的,因为我的系统比较老旧,不能够充分测试,所以你再提供一下详细的截图给我看看?我也方便更新代码,我的系统是rtx2080 8G的显卡,默认是能正常使用的,但是我也遇到过类似的,结果现在还是在你这边的环境下遇到了
ComfyUI 错误报告 ComfyUI 错误报告
错误详情 错误详情
- 节点类型: Joy_caption_two 节点类型: Joy_caption_two
- Exception Type: RuntimeError异常类型:运行时错误
- 异常消息:输入类型(torch.cuda.HalfTensor)和权重类型(torch.FloatTensor)应该相同异常消息:输入类型(torch.cuda.HalfTensor)和权重类型(torch.FloatTensor)应保持一致
堆栈跟踪
![Uploading 微信截图_20241013013201.png…]()
你的截图看不到呀,这个应该是系统默认的创建张量类型不一致导致的,因为我的系统比较旧,无法充分测试,所以你再提供一下详细的截图给我看看吗?我也方便更新代码,我的系统是rtx2080 8G的显卡,默认是能正常使用的,但是我也遇到过类似的,结果现在还是在你的环境下遇到了 got prompt Failed to validate prompt for output 27:
- (prompt):
- Required input is missing: text
- ShowText|pysssss 27:
- Required input is missing: text Output will be ignored Failed to validate prompt for output 10:
- (prompt):
- Required input is missing: image
- WD14Tagger|pysssss 10:
- Required input is missing: image Output will be ignored F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\models\clip\siglip-so400m-patch14-384 Loading VLM's custom vision model Requested to load SiglipVisionTransformer Loading 1 new model loaded completely 0.0 1618.345947265625 True !!! Exception during processing !!! Input type (torch.cuda.HalfTensor) and weight type (torch.FloatTensor) should be the same Traceback (most recent call last): File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\execution.py", line 323, in execute output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\execution.py", line 198, in get_output_data return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\execution.py", line 169, in _map_node_over_list process_inputs(input_dict, i) File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\execution.py", line 158, in process_inputs results.append(getattr(obj, func)(inputs)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 331, in generate vision_outputs = joy_two_pipeline.clip_model.encode_image(pixel_values) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 65, in encode_image vision_outputs = self.model(pixel_values=pixel_values, output_hidden_states=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, *kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl return forward_call(args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\transformers\models\siglip\modeling_siglip.py", line 1088, in forward hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl return forward_call(*args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\transformers\models\siglip\modeling_siglip.py", line 311, in forward patch_embeds = self.patch_embedding(pixel_values) # shape = [, width, grid, grid] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl return self._call_impl(args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl return forward_call(*args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\conv.py", line 458, in forward return self._conv_forward(input, self.weight, self.bias) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\conv.py", line 454, in _conv_forward return F.conv2d(input, weight, bias, self.stride, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: Input type (torch.cuda.HalfTensor) and weight type (torch.FloatTensor) should be the same
Prompt executed in 48.35 seconds
Exception in thread Thread-8 (
我照网上的办法 修改了models\clip\siglip-so400m-patch14-384\config.json "rms_norm_eps": 1e-05, "rope_scaling": { "factor": 8.0, "type": "dynamic" 就能正常工作了 ,说是transformers新版本 rope_scaling 一些参数变了。
你是怎么修改的呀?
更新一下代码,我修复了部分BUG,指定了加载类型,或者能修复这个BUG
更新一下代码,我修复了部分BUG,指定了加载类型,或者能修复这个BUG
mixed dtype (CPU): expect parameter to have scalar type of Float
重新在manger里安装了。运行又报这个错, 怎么解呀?
更新一下代码,我修复了部分BUG,指定了加载类型,或者能修复这个BUG
Mixed dtype (CPU): Expect parameter to have scalar type of Float 重新在manger里安装了。运行又报这个错,怎么解呀?
got prompt Failed to validate prompt for output 27:
更新一下代码,我修复了部分BUG,指定了加载类型,或者能修复这个BUG
Mixed dtype (CPU): Expect parameter to have scalar type of Float 重新在manger里安装了。运行又报这个错,怎么解呀?
got prompt Failed to validate prompt for output 27:
(prompt):
- Required input is missing: text
ShowText|pysssss 27:
- Required input is missing: text Output will be ignored Failed to validate prompt for output 10:
(prompt):
- Required input is missing: image
WD14Tagger|pysssss 10:
- Required input is missing: image Output will be ignored F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\models\clip\siglip-so400m-patch14-384 Loading VLM's custom vision model Requested to load SiglipVisionTransformer Loading 1 new model loaded completely 0.0 809.1729736328125 True !!! Exception during processing !!! mixed dtype (CPU): expect parameter to have scalar type of Float Traceback (most recent call last): File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\execution.py", line 323, in execute output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\execution.py", line 198, in get_output_data return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\execution.py", line 169, in _map_node_over_list process_inputs(input_dict, i) File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\execution.py", line 158, in process_inputs results.append(getattr(obj, func)(inputs)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 332, in generate vision_outputs = joy_two_pipeline.clip_model.encode_image(pixel_values) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 66, in encode_image vision_outputs = self.model(pixel_values=pixel_values, output_hidden_states=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, *kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl return forward_call(args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\transformers\models\siglip\modeling_siglip.py", line 1090, in forward encoder_outputs = self.encoder( ^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl return forward_call(*args, *kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\transformers\models\siglip\modeling_siglip.py", line 901, in forward layer_outputs = encoder_layer( ^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl return self._call_impl(args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl return forward_call(*args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\transformers\models\siglip\modeling_siglip.py", line 642, in forward hidden_states = self.layer_norm1(hidden_states) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, *kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl return forward_call(args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\modules\normalization.py", line 202, in forward return F.layer_norm( ^^^^^^^^^^^^^ File "F:\AI\ComfyUI_windows_portable_nvidia (1)\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\nn\functional.py", line 2576, in layer_norm return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: mixed dtype (CPU): expect parameter to have scalar type of Float
贴一下你的transformers版本?
我照网上的办法 修改了models\clip\siglip-so400m-patch14-384\config.json "rms_norm_eps": 1e-05, "rope_scaling": { "factor": 8.0, "type": "dynamic" 就能正常工作了 ,说是transformers新版本 rope_scaling 一些参数变了。
你是怎么修改的呀?
右键编辑 config.json,最最最下面 找到 rope_scaling之后那些相似字段,变成我贴的那一段,就好了。
我照网上的办法 修改了models\clip\siglip-so400m-patch14-384\config.json "rms_norm_eps": 1e-05, "rope_scaling": { "factor": 8.0, "type": "dynamic" 就能正常工作了 ,说是transformers新版本 rope_scaling 一些参数变了。
你是怎么修改的呀?
右键编辑 config.json,最最最下面 找到 rope_scaling之后那些相似字段,变成我贴的那一段,就好了。
兄弟,我没找到你说的这部分代码啊,siglip-so400m-patch14-384抱脸官方仓库里也没有,我这也出现报错了
你们的 transformers 版本是多少?我在云服务器遇到这个 rope_scaling must be a dictionary with two fields, type and factor, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'} 这个错误时,更新 transformers到最新的就可以了
你们的 transformers 版本是多少?我在云服务器遇到这个 rope_scaling must be a dictionary with two fields, type and factor, got {'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'} 这个错误时,更新 transformers到最新的就可以了
transformers==4.44.2
同样的错误:
ComfyUI Error Report
Error Details
- Node Type: Joy_caption_two_advanced
- Exception Type: RuntimeError
Exception Message: Input type (torch.FloatTensor) and weight type (torch.HalfTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
Stack Trace
File "E:\AIGC\ComfyUI\execution.py", line 323, in execute output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\execution.py", line 198, in get_output_data return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\execution.py", line 169, in _map_node_over_list process_inputs(input_dict, i) File "E:\AIGC\ComfyUI\execution.py", line 158, in process_inputs results.append(getattr(obj, func)(**inputs)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 496, in generate vision_outputs = joy_two_pipeline.clip_model.encode_image(pixel_values) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 67, in encode_image vision_outputs = self.model(pixel_values=pixel_values, output_hidden_states=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\venv\Lib\site-packages\transformers\models\siglip\modeling_siglip.py", line 1087, in forward hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\venv\Lib\site-packages\transformers\models\siglip\modeling_siglip.py", line 310, in forward patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\conv.py", line 460, in forward return self._conv_forward(input, self.weight, self.bias) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward return F.conv2d(input, weight, bias, self.stride, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## System Information - **ComfyUI Version:** v0.2.3 - **Arguments:** E:\AIGC\ComfyUI\main.py --auto-launch --preview-method auto --disable-cuda-malloc --lowvram --preview-method auto --use-split-cross-attention - **OS:** nt - **Python Version:** 3.11.7 (tags/v3.11.7:fa7a6f2, Dec 4 2023, 19:24:49) [MSC v.1937 64 bit (AMD64)] - **Embedded Python:** false - **PyTorch Version:** 2.2.0+cu118 ## Devices
已经尝试过:
你们先帮我测试一下,我先不改代码,你们在 joy_caption_two_node.py
的第132行左右的这里添加这两行代码:
image_adapter.load_state_dict(torch.load(adapter_path, map_location=self.offload_device, weights_only=True))
image_adapter.eval()
中间添加这两行,指定加载格式:
image_adapter.load_state_dict(torch.load(adapter_path, map_location=self.offload_device, weights_only=True))
# 新增加的两行
img_dtype = text_encoder_dtype()
image_adapter = image_adapter.to(img_dtype)
# 就是指定转换到统一格式
image_adapter.eval()
然后重启尝试一下,看看还会不会出现精度不一致的问题:
Exception Message: Input type (torch.cuda.HalfTensor) and weight type (torch.FloatTensor) should be the same
如果可以的话,你们反馈一下,我再更新代码
我照网上的办法 修改了models\clip\siglip-so400m-patch14-384\config.json "rms_norm_eps": 1e-05, "rope_scaling": { "factor": 8.0, "type": "dynamic" 就能正常工作了 ,说是transformers新版本 rope_scaling 一些参数变了。
你是怎么修改的呀?
右键编辑 config.json,最最最下面 找到 rope_scaling之后那些相似字段,变成我贴的那一段,就好了。
兄弟,我没找到你说的这部分代码啊,siglip-so400m-patch14-384抱脸官方仓库里也没有,我这也出现报错了
兄弟,在这里面models\LLM\Meta-Llama-3.1-8B-bnb-4bit,他应该搞错文件夹了,我在这里找到了,跟他的一样代码,但按照改了也不行
你们先帮我测试一下,我先不改代码,你们在
joy_caption_two_node.py
的第132行左右的这里添加这两行代码:image_adapter.load_state_dict(torch.load(adapter_path, map_location=self.offload_device, weights_only=True)) image_adapter.eval()
中间添加这两行,指定加载格式:
image_adapter.load_state_dict(torch.load(adapter_path, map_location=self.offload_device, weights_only=True)) # 新增加的两行 img_dtype = text_encoder_dtype() image_adapter = image_adapter.to(img_dtype) # 就是指定转换到统一格式 image_adapter.eval()
然后重启尝试一下,看看还会不会出现精度不一致的问题:
Exception Message: Input type (torch.cuda.HalfTensor) and weight type (torch.FloatTensor) should be the same
如果可以的话,你们反馈一下,我再更新代码
UP加油啊,对你的期望很大啊!
你们先帮我测试一下,我先不改代码,你们在
joy_caption_two_node.py
的第132行左右的这里添加这两行代码:image_adapter.load_state_dict(torch.load(adapter_path, map_location=self.offload_device, weights_only=True)) image_adapter.eval()
中间添加这两行,指定加载格式:
image_adapter.load_state_dict(torch.load(adapter_path, map_location=self.offload_device, weights_only=True)) # 新增加的两行 img_dtype = text_encoder_dtype() image_adapter = image_adapter.to(img_dtype) # 就是指定转换到统一格式 image_adapter.eval()
然后重启尝试一下,看看还会不会出现精度不一致的问题:
Exception Message: Input type (torch.cuda.HalfTensor) and weight type (torch.FloatTensor) should be the same
如果可以的话,你们反馈一下,我再更新代码
UP加油啊,对你的期望很大啊!
主要是我复现不了,就挺尴尬,有时候可能就是安装依赖的问题,有时是系统环境不一样的问题,那你也帮我尝试一下,先把代码更新到最新,然后在 joy_caption_two_node.py
的第64行那一个方法添加下面一行:
def encode_image(self, pixel_values):
#print(f"{id(self)}之前 in JoyClipVisionModel: {next(self.model.parameters()).device}") # 打印模型参数的设备
load_models_gpu([self.patcher], force_full_load=True, force_patch_weights=True)
#print(f"之后 in JoyClipVisionModel: {next(self.model.parameters()).device}") # 打印模型参数的设备
# 将图像数据转换为模型的 dtype 添加下面这行
pixel_values = pixel_values.to(dtype=self.type)
vision_outputs = self.model(pixel_values=pixel_values, output_hidden_states=True)
return vision_outputs
保存重启ComfyUI试一下
Exception Message: "LayerNormKernelImpl" not implemented for 'Half'
File "E:\AIGC\ComfyUI\execution.py", line 323, in execute
output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\execution.py", line 198, in get_output_data
return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\execution.py", line 169, in _map_node_over_list
process_inputs(input_dict, i)
File "E:\AIGC\ComfyUI\execution.py", line 158, in process_inputs
results.append(getattr(obj, func)(**inputs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 344, in generate
vision_outputs = joy_two_pipeline.clip_model.encode_image(pixel_values)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\custom_nodes\ComfyUI_SLK_joy_caption_two\joy_caption_two_node.py", line 69, in encode_image
vision_outputs = self.model(pixel_values=pixel_values, output_hidden_states=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\transformers\models\siglip\modeling_siglip.py", line 1089, in forward
encoder_outputs = self.encoder(
^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\transformers\models\siglip\modeling_siglip.py", line 900, in forward
layer_outputs = encoder_layer(
^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\transformers\models\siglip\modeling_siglip.py", line 641, in forward
hidden_states = self.layer_norm1(hidden_states)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\modules\normalization.py", line 201, in forward
return F.layer_norm(
^^^^^^^^^^^^^
File "E:\AIGC\ComfyUI\venv\Lib\site-packages\torch\nn\functional.py", line 2546, in layer_norm
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# 新增加的两行
img_dtype = text_encoder_dtype()
image_adapter = image_adapter.to(img_dtype)
# 将图像数据转换为模型的 dtype 添加下面这行
pixel_values = pixel_values.to(dtype=self.type)
上面两条已添加,这是报错信息
各位兄弟,我搞定了,先说一下我的这个过程,仅供参考。我用的是秋叶最新版,下载完秋叶包后,所有东西都不更新,直接重新安装该插件,运行comfyui后自动安装依赖,可能提出现红色错误提示,先不管。下一步一定要仔细看github上的说明,尤其是文件名和文件夹的名称,哪怕是下划线,一定要跟说明的一模一样,如果是自行下载的模型,所有文件夹和里面的文件一定要跟Hugging Face命名一样,仔细对照,一步错即全错。
我的解决了,直接卸载插件重新安装就好了,模型不用重新下载,用回之前下载的模型文件就好了
ComfyUI Error Report
Error Details
Exception Message:
Stack Trace
删除手动下载文件,让它自动下载models\clip\siglip-so400m-patch14-384 也是一样的错误,该怎么办 大佬?