FreedomIntelligence / LLMZoo

⚡LLM Zoo is a project that provides data, models, and evaluation benchmark for large language models.⚡
Apache License 2.0
2.93k stars 201 forks source link

[ask]training code? #8

Closed LangDaoAI closed 1 year ago

LangDaoAI commented 1 year ago

Team,

When to release training code(pretraining、instruct fine-tuning、RLHF)?

Thanks!

zhjohnchan commented 1 year ago

Hi @LangDaoAI,

Thanks for your attention!

The code will be released soon (within this week). Please stay tuned!

Best, Zhihong

LangDaoAI commented 1 year ago

Hi @LangDaoAI,

Thanks for your attention!

The code will be released soon (within this week). Please stay tuned!

Best, Zhihong

thanks reply and hard work! I will close the issue

LangDaoAI commented 1 year ago

@zhjohnchan

Hi , Zhihong, has any progress on the issue?

zhjohnchan commented 1 year ago

Hi @LangDaoAI,

Thanks for your attention!

We have uploaded the training code (see here). Now you can train Phoenix. :-)

Best, Zhihong

LangDaoAI commented 1 year ago

Hi @LangDaoAI,

Thanks for your attention!

We have uploaded the training code (see here). Now you can train Phoenix. :-)

Best, Zhihong

@zhjohnchan awasome !

A quick question as following:

If I want to use lora , option parameter in the following script should be ?

image

zhjohnchan commented 1 year ago

Hi @LangDaoAI,

We also support LoRA. :-)

Just add a parameter --lora True to use LoRA. In the meantime, you can turn off fsdp and increase the batch size since the GPU memory requirement is low for LoRA.

Best, Zhihong

LangDaoAI commented 1 year ago

Hi @LangDaoAI,

We also support LoRA. :-) Just add a parameter --lora True to use LoRA.

Best, Zhihong

Sure, thanks!

@zhjohnchan a final question: Is there any group/way to communicate with? e.g. wechat

zhjohnchan commented 1 year ago

Hi @LangDaoAI,

I have updated the code for lora training. Please pull the latest code.

The following is an example to use LoRA:

torchrun \
  --nnodes=1 \
  --nproc_per_node=8 \
  --master_port=12375 \
  train.py \
  --model_name_or_path ${model_name_or_path} \
  --model_max_length ${model_max_length} \
  --data_path ${data_path} \
  --output_dir ${output_dir} \
  --bf16 True \
  --num_train_epochs 3 \
  --per_device_train_batch_size 1 \
  --per_device_eval_batch_size 1 \
  --gradient_accumulation_steps 32 \
  --save_strategy "steps" \
  --save_steps 500 \
  --evaluation_strategy "no" \
  --save_total_limit 3 \
  --learning_rate 2e-5 \
  --weight_decay 0. \
  --warmup_ratio 0.03 \
  --lr_scheduler_type "cosine" \
  --logging_steps 1 \
  --tf32 True \
  --gradient_checkpointing False \
  --ddp_find_unused_parameters False \
  --lora True

Best, Zhihong

LangDaoAI commented 1 year ago

Hi @LangDaoAI,

I have updated the code for lora training. Please pull the latest code.

The following is an example to use LoRA:

torchrun \
  --nnodes=1 \
  --nproc_per_node=8 \
  --master_port=12375 \
  train.py \
  --model_name_or_path ${model_name_or_path} \
  --model_max_length ${model_max_length} \
  --data_path ${data_path} \
  --output_dir ${output_dir} \
  --bf16 True \
  --num_train_epochs 3 \
  --per_device_train_batch_size 1 \
  --per_device_eval_batch_size 1 \
  --gradient_accumulation_steps 32 \
  --save_strategy "steps" \
  --save_steps 500 \
  --evaluation_strategy "no" \
  --save_total_limit 3 \
  --learning_rate 2e-5 \
  --weight_decay 0. \
  --warmup_ratio 0.03 \
  --lr_scheduler_type "cosine" \
  --logging_steps 1 \
  --tf32 True \
  --gradient_checkpointing False \
  --ddp_find_unused_parameters False \
  --lora True

Best, Zhihong

Thanks hard working! @zhjohnchan Team有交流的微信群/slack或者其他吗, 希望可以加入进一步交流!