Open HOMGH opened 4 years ago
Prepare dataset: 1)For training this model, you need to use "img_celeba" folder in celebA dataset. 2)This data should be aligned using 5 landmarks from "list_landmarks_align_celeba.tx using preproces function in https://github.com/microsoft/Deep3DFaceReconstruction/blob/4b27ddf4227c687b953caa7aa3f3e7acf87cc786/preprocess_img.py#L52 list_landmarks_align_celeba.txt 3) Segment the aligned dataset 4)Make RGBA using the following code: def save_RGBA_face(im, parsing_anno, img_size, save_path='vis_results/parsing_map_on_im.jpg'):
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
face_mask = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1]))
num_of_class = np.max(vis_parsing_anno)
for pi in range(1, num_of_class + 1):
index = np.where(vis_parsing_anno == pi)
if pi in [1,2,3,4,5,10,12,13]:
face_mask[index[0], index[1]] = 255.0
im = np.array(im)
img = im.copy().astype(np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
seg_img = face_mask.astype(np.uint8)
img = cv2.resize(img, (img_size, img_size))
seg_img = cv2.resize(seg_img, (img_size, img_size))
seg_img = seg_img[:,:,None]
BGRA_img = np.concatenate((img, seg_img), axis=2)
cv2.imwrite(save_path, BGRA_img)
5) create .bin files using create_bin.py
Done!
Now the Dataset is ready to be used for training the model...
P.S, Thank @deepmo24 for her contribution.
Great, but how to segment the dataset? Is there any good public algorithm available?
Great, but how to segment the dataset? Is there any good public algorithm available?
https://github.com/FuxiCV/3D-Face-GCNs/issues/2#issuecomment-658134688 Here is the segmentation algorithm suggested by the author.
Thx a lot!
Hello, what is the size of your bin dataset? I may faced with some troubles....(152GB)
Hello, what is the size of your bin dataset? I may faced with some troubles....(152GB)
Hi, Mine is 156 GB.
Hello, what is the size of your bin dataset? I may faced with some troubles....(152GB)
Hi, Mine is 156 GB.
Thx a lot!
@HOMGH can you share the dataset?
Prepare dataset: 1)For training this model, you need to use "img_celeba" folder in celebA dataset. 2)This data should be aligned using 5 landmarks from "list_landmarks_align_celeba.tx using preproces function in https://github.com/microsoft/Deep3DFaceReconstruction/blob/4b27ddf4227c687b953caa7aa3f3e7acf87cc786/preprocess_img.py#L52 list_landmarks_align_celeba.txt 3) Segment the aligned dataset 4)Make RGBA using the following code: def save_RGBA_face(im, parsing_anno, img_size, save_path='vis_results/parsing_map_on_im.jpg'):
vis_parsing_anno = parsing_anno.copy().astype(np.uint8) face_mask = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1])) num_of_class = np.max(vis_parsing_anno) for pi in range(1, num_of_class + 1): index = np.where(vis_parsing_anno == pi) if pi in [1,2,3,4,5,10,12,13]: face_mask[index[0], index[1]] = 255.0 im = np.array(im) img = im.copy().astype(np.uint8) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) seg_img = face_mask.astype(np.uint8) img = cv2.resize(img, (img_size, img_size)) seg_img = cv2.resize(seg_img, (img_size, img_size)) seg_img = seg_img[:,:,None] BGRA_img = np.concatenate((img, seg_img), axis=2) cv2.imwrite(save_path, BGRA_img)
- create .bin files using create_bin.py
Done!
Now the Dataset is ready to be used for training the model...
P.S, Thank @deepmo24 for her contribution.
hi,Can you success to the train?Could you ask me some questions?(hicaicaihi for my wetchat)
how do you obtain the the fllowing three data? train_txt = '{}_train.txt'.format(prefix) val_txt = '{}_val.txt'.format(prefix) test_txt = '{}
Segment the aligned dataset
Segment the aligned dataset?link only speak decode process,how split face and no_face data?
@HOMGH can you share the dataset?
Hi,do you prepare the dataset for training?would you like share with me?
Hello, what is the size of your bin dataset? I may faced with some troubles....(152GB)
Hi, Mine is 156 GB.
Thx a lot!
can you share the dataset?
Hi, do you train with main.py? have you suffer out of memory?Could you share your train.py with me?plz reply to 3180532485@qq.com thx. @HOMGH
Prepare dataset: 1)For training this model, you need to use "img_celeba" folder in celebA dataset. 2)This data should be aligned using 5 landmarks from "list_landmarks_align_celeba.tx using preproces function in https://github.com/microsoft/Deep3DFaceReconstruction/blob/4b27ddf4227c687b953caa7aa3f3e7acf87cc786/preprocess_img.py#L52 list_landmarks_align_celeba.txt 3) Segment the aligned dataset 4)Make RGBA using the following code: def save_RGBA_face(im, parsing_anno, img_size, save_path='vis_results/parsing_map_on_im.jpg'):
vis_parsing_anno = parsing_anno.copy().astype(np.uint8) face_mask = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1])) num_of_class = np.max(vis_parsing_anno) for pi in range(1, num_of_class + 1): index = np.where(vis_parsing_anno == pi) if pi in [1,2,3,4,5,10,12,13]: face_mask[index[0], index[1]] = 255.0 im = np.array(im) img = im.copy().astype(np.uint8) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) seg_img = face_mask.astype(np.uint8) img = cv2.resize(img, (img_size, img_size)) seg_img = cv2.resize(seg_img, (img_size, img_size)) seg_img = seg_img[:,:,None] BGRA_img = np.concatenate((img, seg_img), axis=2) cv2.imwrite(save_path, BGRA_img)
1. create .bin files using create_bin.py
Done!
Now the Dataset is ready to be used for training the model...
P.S, Thank @deepmo24 for her contribution.
Hi, can you train the model correctly? If you can do that, could you please share your pre-model? Thank you very much! 1154225766@qq.com
you obtain the the fllowing three data?
how do you obtain the the fllowing three data? train_txt = '{}_train.txt'.format(prefix) val_txt = '{}_val.txt'.format(prefix) test_txt = '{}
I have the same problem, did you solve it?
Just use img_align_celebA_png.7z I think. I suggest you read this part of code carefully (containing the aligning code) https://github.com/FuxiCV/3D-Face-GCNs/blob/2c4459cfa05faaf82ef85994a696e79d2993d650/utils.py#L217
Originally posted by @deepmo24 in https://github.com/FuxiCV/3D-Face-GCNs/issues/10#issuecomment-693219359