from ohsome import OhsomeClient
client = OhsomeClient()
time = "2018-01-01"
request = client.elements.count.post(
bpolys = '8.65821,49.41129,8.65821,49.41825,8.70053,49.41825,8.70053,49.41129,8.65821,49.41129',
filter = "building = yes",
time = time
)
print(request.data)
print(request.as_dataframe())
request.data works fine. But request.as_dataframe() results in an Error:
Traceback (most recent call last):
File "tests.py", line 12, in <module>
print(request.as_dataframe())
File "/home/mkraft/miniconda3/envs/ohsome/lib/python3.8/site-packages/ohsome/response.py", line 30, in as_dataframe
return self._as_dataframe(multi_index)
File "/home/mkraft/miniconda3/envs/ohsome/lib/python3.8/site-packages/ohsome/response.py", line 61, in _as_dataframe
self._format_timestamp(result_df)
File "/home/mkraft/miniconda3/envs/ohsome/lib/python3.8/site-packages/ohsome/response.py", line 172, in _format_timestamp
result_df["timestamp"] = pd.to_datetime(
File "/home/mkraft/.local/lib/python3.8/site-packages/pandas/core/tools/datetimes.py", line 1050, in to_datetime
values = convert_listlike(arg._values, format)
File "/home/mkraft/.local/lib/python3.8/site-packages/pandas/core/tools/datetimes.py", line 453, in _convert_listlike_datetimes
return _array_strptime_with_fallback(arg, name, utc, format, exact, errors)
File "/home/mkraft/.local/lib/python3.8/site-packages/pandas/core/tools/datetimes.py", line 484, in _array_strptime_with_fallback
result, timezones = array_strptime(arg, fmt, exact=exact, errors=errors, utc=utc)
File "pandas/_libs/tslibs/strptime.pyx", line 530, in pandas._libs.tslibs.strptime.array_strptime
File "pandas/_libs/tslibs/strptime.pyx", line 355, in pandas._libs.tslibs.strptime.array_strptime
ValueError: unconverted data remains when parsing with format "%Y-%m-%dT%H:%M:%S": "Z", at position 0. You might want to try:
- passing `format` if your strings have a consistent format;
- passing `format='ISO8601'` if your strings are all ISO8601 but not necessarily in exactly the same format;
- passing `format='mixed'`, and the format will be inferred for each element individually. You might want to use `dayfirst` alongside this.
My panda Version is 1.5.3. The problem also happens in 1.5.2. It also happens with groupByBoundary-post-request. 2 Months ago this error did not happen.
I have the following small script:
My panda Version is 1.5.3. The problem also happens in 1.5.2. It also happens with groupByBoundary-post-request. 2 Months ago this error did not happen.
Thanks for inspecting, Manuel