Closed Moon-heart closed 1 year ago
hi, Thank you very much for your reply, inspired by you, I tried to reinstall Habitat-Lab and Habita-sim according to the way provided by Facebook's official website, and tested them according to the official website. I re-run the command"python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_train.yaml --run-type trainl", but the result still reported an error. The train.log output showed memory errors when initialization of the Habitat-sim.
train.log details are as follows: 2023-09-27 17:20:53,845 Initializing dataset VLN-CE-v1 2023-09-27 17:20:54,397 Simulator GPU ID [0] 2023-09-27 17:20:54,398 Simulator GPU ID 0 2023-09-27 17:20:54,398 [construct_envs] Using GPU ID 0 2023-09-27 17:20:54,398 Initializing dataset VLN-CE-v1 2023-09-27 17:20:54,947 initializing sim Sim-v0
output details are as follows: 2023-09-27 17:20:53,810 config: BASE_TASK_CONFIG_PATH: habitat_extensions/config/robo_vln_task.yaml CHECKPOINT_FOLDER: data/robo-vln/checkpoints/ CMD_TRAILING_OPTS: [] DAGGER: BATCH_SIZE: 1 CKPT_TO_LOAD: data/checkpoints/ckpt.0.pth COLLECT_DATA_SPLIT: train EPOCHS: 25 INTER_MODULE_ATTN: False ITERATIONS: 1 LMDB_COMMIT_FREQUENCY: 500 LMDB_EVAL_DIR: data/trajectories_dirs/debug/trajectories.lmdb LMDB_EVAL_SIZE: 100000000000.0 LMDB_FEATURES_DIR: data/trajectories_dirs/robo-vln/train/trajectories.lmdb LMDB_MAP_SIZE: 2700000000000.0 LMDB_STORE_FREQUENCY: 5 LOAD_FROM_CKPT: False LR: 0.0001 P: 1.0 PRELOAD_LMDB_FEATURES: False UPDATE_SIZE: 7739 USE_IW: True split_dim: 0 tbptt_steps: 100 time_step: 0.03333333333333333 DDP: dist_backend: nccl dist_url: env:// distributed: False gpu: 0 rank: 0 world_size: 1 ENV_NAME: VLNCEDaggerEnv EVAL: EPISODE_COUNT: 570 EVAL_NONLEARNING: False NONLEARNING: AGENT: RandomAgent SPLIT: val_seen USE_CKPT_CONFIG: False VAL_LOG_DIR: validation_logging/ EVAL_CKPT_PATH_DIR: data/robo-vln/checkpoints/ LOG_FILE: train.log MODEL: ACTION_DECODER_TRANFORMER: N: 1 d_ff: 1024 d_model: 512 dropout: 0.1 fc_output: 512 h: 4 in_features: 32 CMA: rcm_state_encoder: False use: False use_prev_action: False DEPTH_ENCODER: backbone: resnet50 cnn_type: VlnResnetDepthEncoder ddppo_checkpoint: data/ddppo-models/gibson-2plus-resnet50.pth output_size: 128 FLAT_AUX_LOSS: use: False HIERARCHICAL:
HYBRID_STATE_DECODER:
N: 1
RNN_output_size: 512
d_ff: 1024
d_in: 512
d_model: 512
d_out: 256
dropout: 0.1
fc_output: 512
h: 4
hidden_size: 512
in_features: 512
prev_action_embedding_dim: 32
rnn_type: LSTM
IMAGE_CROSS_MODAL_ENCODER:
N: 1
d_ff: 1024
d_in: 512
d_model: 256
d_out: 256
dropout: 0.2
h: 2
INSTRUCTION_ENCODER:
bidirectional: False
dataset_vocab: data/datasets/R2R_VLNCE_v1_preprocessed/train/train.json.gz
dropout_ratio: 0.25
embedding_file: data/datasets/robo_vln_v1/embeddings.json.gz
embedding_size: 50
final_state_only: True
fine_tune_embeddings: False
hidden_size: 256
is_bert: True
max_length: 200
num_layers: 1
rnn_type: LSTM
use_pretrained_embeddings: True
vocab_size: 2504
INTER_MODULE_ATTN:
N: 1
d_ff: 1024
d_model: 512
dropout: 0.1
fc_output: 512
h: 4
in_features: 512
LANG_ATTN:
hidden_size: 256
use: False
PROGRESS_MONITOR:
alpha: 1.0
use: False
RGB_ENCODER:
cnn_type: TorchVisionResNet50
output_size: 256
resnet_output_size: 256
SEM_ATTN_ENCODER:
hidden_size: 256
use: False
SEM_MAP_TRANSFORMER:
N: 1
d_ff: 1024
d_in: 128
d_model: 512
d_out: 256
downsample_size: 20
dropout: 0.1
embedding_dim: 128
h: 4
layer_norm_eps: 1e-12
n_output: 512
SEM_TEXT_ATTN:
hidden_size: 256
use: False
SEQ2SEQ:
use_prev_action: False
STATE_ENCODER:
hidden_size: 512
rnn_type: LSTM
TRANSFORMER:
hidden_size: 512
lr: 0.0001
lr_drop: 4
output_size: 512
scheduler_patience: 0.0001
split_gpus: False
use: False
use_prev_action: True
weight_decay: 0.001
TRANSFORMER_INSTRUCTION_ENCODER:
N: 1
d_ff: 1024
d_in: 768
d_model: 256
dropout: 0.2
h: 4
is_bert: True
VISUAL_LING_ATTN:
N: 1
d_ff: 1024
d_model: 256
dropout: 0.25
fc_output: 512
h: 4
ins_in_features: 768
vis_in_features: 256
ablate_depth: False
ablate_instruction: False
ablate_rgb: False
ablate_sem_attn: False
inflection_weight_coef: 3.2
NUM_PROCESSES: 1
PLOT_ATTENTION: False
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR']
SIMULATOR_GPU_ID: [0]
TASK_CONFIG:
DATASET:
CONTENT_SCENES: ['*']
DATA_PATH: data/datasets/robo_vln_v1/{split}/{split}.json.gz
SCENES_DIR: data/scene_datasets/
SPLIT: train
TYPE: VLN-CE-v1
ENVIRONMENT:
ITERATOR_OPTIONS:
CYCLE: True
GROUP_BY_SCENE: True
MAX_SCENE_REPEAT_EPISODES: -1
MAX_SCENE_REPEAT_STEPS: 10000
NUM_EPISODE_SAMPLE: -1
SHUFFLE: True
STEP_REPETITION_RANGE: 0.2
MAX_EPISODE_SECONDS: 10000000
MAX_EPISODE_STEPS: 1000
PYROBOT:
BASE_CONTROLLER: proportional
BASE_PLANNER: none
BUMP_SENSOR:
TYPE: PyRobotBumpSensor
DEPTH_SENSOR:
CENTER_CROP: False
HEIGHT: 480
MAX_DEPTH: 5.0
MIN_DEPTH: 0.0
NORMALIZE_DEPTH: True
TYPE: PyRobotDepthSensor
WIDTH: 640
LOCOBOT:
ACTIONS: ['BASE_ACTIONS', 'CAMERA_ACTIONS']
BASE_ACTIONS: ['go_to_relative', 'go_to_absolute']
CAMERA_ACTIONS: ['set_pan', 'set_tilt', 'set_pan_tilt']
RGB_SENSOR:
CENTER_CROP: False
HEIGHT: 480
TYPE: PyRobotRGBSensor
WIDTH: 640
ROBOT: locobot
ROBOTS: ['locobot']
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR', 'BUMP_SENSOR']
SEED: 100
SIMULATOR:
ACTION_SPACE_CONFIG: v0
AGENTS: ['AGENT_0']
AGENT_0:
ANGULAR_ACCELERATION: 12.56
ANGULAR_FRICTION: 1.0
COEFFICIENT_OF_RESTITUTION: 0.0
HEIGHT: 1.5
IS_SET_START_STATE: False
LINEAR_ACCELERATION: 20.0
LINEAR_FRICTION: 0.5
MASS: 32.0
RADIUS: 0.1
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR']
START_POSITION: [0, 0, 0]
START_ROTATION: [0, 0, 0, 1]
DEFAULT_AGENT_ID: 0
DEPTH_SENSOR:
HEIGHT: 256
HFOV: 90
MAX_DEPTH: 10.0
MIN_DEPTH: 0.0
NORMALIZE_DEPTH: True
ORIENTATION: [0.0, 0.0, 0.0]
POSITION: [0, 1.25, 0]
TYPE: HabitatSimDepthSensor
WIDTH: 256
FORWARD_STEP_SIZE: 0.25
HABITAT_SIM_V0:
ALLOW_SLIDING: True
ENABLE_PHYSICS: False
GPU_DEVICE_ID: 0
GPU_GPU: False
PHYSICS_CONFIG_FILE: ./data/default.phys_scene_config.json
RGB_SENSOR:
HEIGHT: 224
HFOV: 90
ORIENTATION: [0.0, 0.0, 0.0]
POSITION: [0, 1.25, 0]
TYPE: HabitatSimRGBSensor
WIDTH: 224
SCENE: data/scene_datasets/habitat-test-scenes/van-gogh-room.glb
SEED: 100
SEMANTIC_SENSOR:
HEIGHT: 480
HFOV: 90
ORIENTATION: [0.0, 0.0, 0.0]
POSITION: [0, 1.25, 0]
TYPE: HabitatSimSemanticSensor
WIDTH: 640
TILT_ANGLE: 15
TURN_ANGLE: 15
TYPE: Sim-v0
TASK:
ACTIONS:
ANSWER:
TYPE: AnswerAction
LOOK_DOWN:
TYPE: LookDownAction
LOOK_UP:
TYPE: LookUpAction
MOVE_FORWARD:
TYPE: MoveForwardAction
STOP:
TYPE: StopAction
TELEPORT:
TYPE: TeleportAction
TURN_LEFT:
TYPE: TurnLeftAction
TURN_RIGHT:
TYPE: TurnRightAction
ANSWER_ACCURACY:
TYPE: AnswerAccuracy
COLLISIONS:
TYPE: Collisions
COMPASS_SENSOR:
TYPE: CompassSensor
CORRECT_ANSWER:
TYPE: CorrectAnswer
DISTANCE_TO_GOAL:
DISTANCE_TO: POINT
TYPE: DistanceToGoal
EPISODE_INFO:
TYPE: EpisodeInfo
GLOBAL_GPS_SENSOR:
DIMENSIONALITY: 3
TYPE: GlobalGPSSensor
GOAL_SENSOR_UUID: pointgoal
GPS_SENSOR:
DIMENSIONALITY: 2
TYPE: GPSSensor
HEADING_SENSOR:
TYPE: HeadingSensor
IMAGEGOAL_SENSOR:
TYPE: ImageGoalSensor
INSTRUCTION_SENSOR:
TYPE: InstructionSensor
INSTRUCTION_SENSOR_UUID: instruction
MEASUREMENTS: ['DISTANCE_TO_GOAL', 'SUCCESS', 'SPL', 'PATH_LENGTH', 'NAVIGATION_ERROR', 'STEPS_TAKEN']
NAVIGATION_ERROR:
TYPE: NavigationError
NDTW:
FDTW: True
GT_PATH: data/datasets/robo_vln_v1/{split}/{split}_gt.json.gz
SPLIT: val_seen
SUCCESS_DISTANCE: 3.0
TYPE: NDTW
OBJECTGOAL_SENSOR:
GOAL_SPEC: TASK_CATEGORY_ID
GOAL_SPEC_MAX_VAL: 50
TYPE: ObjectGoalSensor
ORACLE_ACTION_SENSOR:
GOAL_RADIUS: 0.5
TYPE: OracleActionSensor
ORACLE_NAVIGATION_ERROR:
TYPE: OracleNavigationError
ORACLE_SPL:
SUCCESS_DISTANCE: 0.2
TYPE: OracleSPL
ORACLE_SUCCESS:
SUCCESS_DISTANCE: 3.0
TYPE: OracleSuccess
PATH_LENGTH:
TYPE: PathLength
POINTGOAL_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalSensor
POINTGOAL_WITH_GPS_COMPASS_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalWithGPSCompassSensor
POSSIBLE_ACTIONS: ['STOP', 'MOVE_FORWARD', 'TURN_LEFT', 'TURN_RIGHT']
PROXIMITY_SENSOR:
MAX_DETECTION_RADIUS: 2.0
TYPE: ProximitySensor
QUESTION_SENSOR:
TYPE: QuestionSensor
SDTW:
FDTW: True
GT_PATH: data/datasets/robo_vln_v1/{split}/{split}_gt.json.gz
SPLIT: val_seen
SUCCESS_DISTANCE: 3.0
TYPE: SDTW
SENSORS: ['INSTRUCTION_SENSOR', 'VLN_ORACLE_ACTION_SENSOR', 'VLN_ORACLE_PROGRESS_SENSOR', 'HEADING_SENSOR']
SOFT_SPL:
TYPE: SoftSPL
SPL:
SUCCESS_DISTANCE: 3.0
TYPE: SPL
STEPS_TAKEN:
TYPE: StepsTaken
SUCCESS:
SUCCESS_DISTANCE: 3.0
TYPE: Success
SUCCESS_DISTANCE: 3.0
TOP_DOWN_MAP:
DRAW_BORDER: True
DRAW_GOAL_AABBS: True
DRAW_GOAL_POSITIONS: True
DRAW_SHORTEST_PATH: True
DRAW_SOURCE: True
DRAW_VIEW_POINTS: True
FOG_OF_WAR:
DRAW: True
FOV: 90
VISIBILITY_DIST: 5.0
MAP_PADDING: 3
MAP_RESOLUTION: 1250
MAX_EPISODE_STEPS: 1000
NUM_TOPDOWN_MAP_SAMPLE_POINTS: 20000
TYPE: TopDownMap
TYPE: VLN-v0
VLN_ORACLE_ACTION_SENSOR:
GOAL_RADIUS: 0.5
TYPE: VLNOracleActionSensor
VLN_ORACLE_PROGRESS_SENSOR:
TYPE: VLNOracleProgressSensor
TENSORBOARD_DIR: data/robo-vln/tensorboard_dirs/
TORCH_GPU_ID: 0
TRAINER_NAME: robo_vln_trainer
VIDEO_DIR:
VIDEO_OPTION: []
2023-09-27 17:20:53,845 Initializing dataset VLN-CE-v1
2023-09-27 17:20:54,397 Simulator GPU ID [0]
2023-09-27 17:20:54,398 Simulator GPU ID 0
2023-09-27 17:20:54,398 [construct_envs] Using GPU ID 0
2023-09-27 17:20:54,398 Initializing dataset VLN-CE-v1
2023-09-27 17:20:54,947 initializing sim Sim-v0
WARNING: Logging before InitGoogleLogging() is written to STDERR
I0927 17:20:54.952857 288376 AssetAttributesManager.cpp:121] Asset attributes (capsule3DSolid) created and registered.
I0927 17:20:54.952905 288376 AssetAttributesManager.cpp:121] Asset attributes (capsule3DWireframe) created and registered.
I0927 17:20:54.952929 288376 AssetAttributesManager.cpp:121] Asset attributes (coneSolid) created and registered.
I0927 17:20:54.952944 288376 AssetAttributesManager.cpp:121] Asset attributes (coneWireframe) created and registered.
I0927 17:20:54.952952 288376 AssetAttributesManager.cpp:121] Asset attributes (cubeSolid) created and registered.
I0927 17:20:54.952960 288376 AssetAttributesManager.cpp:121] Asset attributes (cubeWireframe) created and registered.
I0927 17:20:54.952997 288376 AssetAttributesManager.cpp:121] Asset attributes (cylinderSolid) created and registered.
I0927 17:20:54.953015 288376 AssetAttributesManager.cpp:121] Asset attributes (cylinderWireframe) created and registered.
I0927 17:20:54.953025 288376 AssetAttributesManager.cpp:121] Asset attributes (icosphereSolid) created and registered.
I0927 17:20:54.953035 288376 AssetAttributesManager.cpp:121] Asset attributes (icosphereWireframe) created and registered.
I0927 17:20:54.953048 288376 AssetAttributesManager.cpp:121] Asset attributes (uvSphereSolid) created and registered.
I0927 17:20:54.953063 288376 AssetAttributesManager.cpp:121] Asset attributes (uvSphereWireframe) created and registered.
I0927 17:20:54.953068 288376 AssetAttributesManager.cpp:108] AssetAttributesManager::buildCtorFuncPtrMaps : Built default primitive asset templates : 12
I0927 17:20:54.953444 288376 PhysicsAttributesManager.cpp:38] File (./data/default.phys_scene_config.json) not found so new, default physics manager attributes created and registered.
I0927 17:20:54.953497 288376 StageAttributesManager.cpp:74] File (data/scene_datasets/mp3d/1pXnuDYAj8r/1pXnuDYAj8r.glb) Based stage attributes created and registered.
W0927 17:20:54.953509 288376 Simulator.cpp:132] Navmesh file not found, checked at
I0927 17:20:54.953531 288376 SceneGraph.h:92] Created DrawableGroup:
Renderer: NVIDIA RTX A6000/PCIe/SSE2 by NVIDIA Corporation
OpenGL version: 4.6.0 NVIDIA 535.54.03
Using optional features:
GL_ARB_ES2_compatibility
GL_ARB_direct_state_access
GL_ARB_get_texture_sub_image
GL_ARB_invalidate_subdata
GL_ARB_multi_bind
GL_ARB_robustness
GL_ARB_separate_shader_objects
GL_ARB_texture_filter_anisotropic
GL_ARB_texture_storage
GL_ARB_texture_storage_multisample
GL_ARB_vertex_array_object
GL_KHR_debug
Using driver workarounds:
no-forward-compatible-core-context
nv-egl-incorrect-gl11-function-pointers
no-layout-qualifiers-on-old-glsl
nv-zero-context-profile-mask
nv-implementation-color-read-format-dsa-broken
nv-cubemap-inconsistent-compressed-image-size
nv-cubemap-broken-full-compressed-image-query
nv-compressed-block-size-in-bits
I0927 17:20:55.005424 288376 ResourceManager.cpp:920] Importing Basis files as BC7
I0927 17:20:55.005686 288376 PhysicsManager.cpp:33] Deconstructing PhysicsManager
I0927 17:20:55.005698 288376 SceneManager.h:24] Deconstructing SceneManager
I0927 17:20:55.005703 288376 SceneGraph.h:25] Deconstructing SceneGraph
I0927 17:20:55.005818 288376 Renderer.cpp:33] Deconstructing Renderer
I0927 17:20:55.005823 288376 WindowlessContext.h:16] Deconstructing WindowlessContext
Traceback (most recent call last):
File "run.py", line 79, in
Can you give me some suggestions? Thank you so much.
Thank you very much for your interesting research and sharing code. I encountered the following error when I run the command "python run.py --exp-config robo_vln_baselines/config/paper_configs/seq2seq_robo.yaml --run-type eval".
Traceback (most recent call last): File "run.py", line 79, in
main()
File "run.py", line 39, in main
run_exp(vars(args))
File "run.py", line 73, in run_exp
trainer.eval()
File "/home/zzy/robo-vln/environments/habitat-lab/habitat_baselines/common/base_trainer.py", line 109, in eval
checkpoint_index=prev_ckpt_ind,
File "/home/zzy/robo-vln/robo_vln_baselines/robo_vln_trainer.py", line 1033, in _eval_checkpoint
self.envs = construct_env(config)
File "/home/zzy/robo-vln/robo_vln_baselines/common/env_utils.py", line 113, in construct_env
env = VLNCEDaggerEnv(config)
File "/home/zzy/robo-vln/robo_vln_baselines/common/environments.py", line 12, in init
super().init(config.TASK_CONFIG, dataset)
File "/home/zzy/robo-vln/environments/habitat-lab/habitat/core/env.py", line 331, in init
self._env = Env(config, dataset)
File "/home/zzy/robo-vln/environments/habitat-lab/habitat/core/env.py", line 105, in init
id_sim=self._config.SIMULATOR.TYPE, config=self._config.SIMULATOR
File "/home/zzy/robo-vln/environments/habitat-lab/habitat/sims/registration.py", line 19, in make_sim
return _sim(kwargs)
File "/home/zzy/robo-vln/environments/habitat-lab/habitat/sims/habitat_simulator/habitat_simulator.py", line 184, in init
super().init(self.sim_config)
File "", line 9, in init
File "/home/zzy/.conda/envs/habitat/lib/python3.6/site-packages/habitat_sim-0.1.5-py3.6-linux-x86_64.egg/habitat_sim/simulator.py", line 87, in attrs_post_init
self.set_from_config(self.config)
File "/home/zzy/.conda/envs/habitat/lib/python3.6/site-packages/habitat_sim-0.1.5-py3.6-linux-x86_64.egg/habitat_sim/simulator.py", line 199, in __set_from_config
self._config_backend(config)
File "/home/zzy/.conda/envs/habitat/lib/python3.6/site-packages/habitat_sim-0.1.5-py3.6-linux-x86_64.egg/habitat_sim/simulator.py", line 136, in _config_backend
super().init__(config.sim_cfg)
MemoryError: std::bad_alloc
Then,I run "free -h",found sufficient memory. can you help me and give me some advice?