GantMan / nsfw_model

Keras model of NSFW detector
Other
1.8k stars 279 forks source link

Windows Bug - Setting the Compile Flag to False when Loading Model #103

Closed OttomanZ closed 2 years ago

OttomanZ commented 2 years ago

I had a problem while running the nsfw_mobilenet2.224x224.h5 model. By setting the compile flag to False here it starts to work. This needs to be fixed in nsfw_detection

Suggessted Fix

In predict.py Line 51 Onwards!

def load_model(model_path):
    if model_path is None or not exists(model_path):
        raise ValueError("saved_model_path must be the valid directory of a saved model to load.")

    model = tf.keras.models.load_model(model_path, custom_objects={'KerasLayer': hub.KerasLayer},compile=False)
    return model
OttomanZ commented 2 years ago

Full Updated predict.py

#! python

import argparse
import json
from os import listdir
from os.path import isfile, join, exists, isdir, abspath

import numpy as np
import tensorflow as tf
from tensorflow import keras
import tensorflow_hub as hub

IMAGE_DIM = 224   # required/default image dimensionality

def load_images(image_paths, image_size, verbose=True):
    '''
    Function for loading images into numpy arrays for passing to model.predict
    inputs:
        image_paths: list of image paths to load
        image_size: size into which images should be resized
        verbose: show all of the image path and sizes loaded

    outputs:
        loaded_images: loaded images on which keras model can run predictions
        loaded_image_indexes: paths of images which the function is able to process

    '''
    loaded_images = []
    loaded_image_paths = []

    if isdir(image_paths):
        parent = abspath(image_paths)
        image_paths = [join(parent, f) for f in listdir(image_paths) if isfile(join(parent, f))]
    elif isfile(image_paths):
        image_paths = [image_paths]

    for img_path in image_paths:
        try:
            if verbose:
                print(img_path, "size:", image_size)
            image = keras.preprocessing.image.load_img(img_path, target_size=image_size)
            image = keras.preprocessing.image.img_to_array(image)
            image /= 255
            loaded_images.append(image)
            loaded_image_paths.append(img_path)
        except Exception as ex:
            print("Image Load Failure: ", img_path, ex)

    return np.asarray(loaded_images), loaded_image_paths

def load_model(model_path):
    if model_path is None or not exists(model_path):
        raise ValueError("saved_model_path must be the valid directory of a saved model to load.")

    model = tf.keras.models.load_model(model_path, custom_objects={'KerasLayer': hub.KerasLayer},compile=False)
    return model

def classify(model, input_paths, image_dim=IMAGE_DIM):
    """ Classify given a model, input paths (could be single string), and image dimensionality...."""
    images, image_paths = load_images(input_paths, (image_dim, image_dim))
    probs = classify_nd(model, images)
    return dict(zip(image_paths, probs))

def classify_nd(model, nd_images):
    """ Classify given a model, image array (numpy)...."""

    model_preds = model.predict(nd_images)
    # preds = np.argsort(model_preds, axis = 1).tolist()

    categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']

    probs = []
    for i, single_preds in enumerate(model_preds):
        single_probs = {}
        for j, pred in enumerate(single_preds):
            single_probs[categories[j]] = float(pred)
        probs.append(single_probs)
    return probs

def main(args=None):
    parser = argparse.ArgumentParser(
        description="""A script to perform NFSW classification of images""",
        epilog="""
        Launch with default model and a test image
            python nsfw_detector/predict.py --saved_model_path mobilenet_v2_140_224 --image_source test.jpg
    """, formatter_class=argparse.RawTextHelpFormatter)

    submain = parser.add_argument_group('main execution and evaluation functionality')
    submain.add_argument('--image_source', dest='image_source', type=str, required=True, 
                            help='A directory of images or a single image to classify')
    submain.add_argument('--saved_model_path', dest='saved_model_path', type=str, required=True, 
                            help='The model to load')
    submain.add_argument('--image_dim', dest='image_dim', type=int, default=IMAGE_DIM,
                            help="The square dimension of the model's input shape")
    if args is not None:
        config = vars(parser.parse_args(args))
    else:
        config = vars(parser.parse_args())

    if config['image_source'] is None or not exists(config['image_source']):
        raise ValueError("image_source must be a valid directory with images or a single image to classify.")

    model = load_model(config['saved_model_path'])    
    image_preds = classify(model, config['image_source'], config['image_dim'])
    print(json.dumps(image_preds, indent=2), '\n')

if __name__ == "__main__":
    main()
OttomanZ commented 2 years ago

@GantMan Push Update to Repo.

Error Encountered Before Fix

2022-04-02 16:54:28.602775: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX AVX2
WARNING:tensorflow:Error in loading the saved optimizer state. As a result, your model is starting with a freshly initialized optimizer.

OS Information

[x] Windows 10 21H2 [x] tensorflow-cpu==2.8.0

Error Log

2022-04-02 16:54:28.602775: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX AVX2
WARNING:tensorflow:Error in loading the saved optimizer state. As a result, your model is starting with a freshly initialized optimizer.

Proposed Fixed

Mentioned Above :)