Closed dagarfield closed 4 months ago
Encountering the following issue
dataset = grelu.data.dataset.SeqDataset(df.seq.to_list()) embeddings = binary_model.embed_on_dataset(dataset, devices = [0], num_workers=7)
Leads to the following error
--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[35], line 1 ----> 1 embeddings = binary_model.embed_on_dataset(dataset, devices = [0], num_workers=7) File ~/.conda/envs/gRelu_v1/lib/python3.10/site-packages/grelu/lightning/__init__.py:847, in LightningModel.embed_on_dataset(self, dataset, devices, num_workers, batch_size) 843 device = device[0] 844 warnings.warn( 845 f"embed_on_dataset currently only uses a single GPU: {device}" 846 ) --> 847 self.to(device) 849 # Get embeddings 850 preds = [] File ~/.conda/envs/gRelu_v1/lib/python3.10/site-packages/lightning_fabric/utilities/device_dtype_mixin.py:53, in _DeviceDtypeModuleMixin.to(self, *args, **kwargs) 51 """See :meth:`torch.nn.Module.to`.""" 52 # this converts `str` device to `torch.device` ---> 53 device, dtype = torch._C._nn._parse_to(*args, **kwargs)[:2] 54 _update_properties(self, device=device, dtype=dtype) 55 return super().to(*args, **kwargs) RuntimeError: Expected one of cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia, privateuseone device type at start of device string: gpu
The snippet runs fine (if slowly) if you remove the reference to a specific device and just let it default to using the CPU
For now, you can get around this by supplying devices='cuda:0'
No dice -- it give the same error. Letting it default to 'cpu' (or putting that in for devices) works fine for now (just slow)
Resolved by #20
Encountering the following issue
Leads to the following error
The snippet runs fine (if slowly) if you remove the reference to a specific device and just let it default to using the CPU