24-10-30 10:57:20.926 - INFO: Model [DDPM] is created.
24-10-30 10:57:20.926 - INFO: Initial Diffusion Model Finished
24-10-30 10:57:21.091 - INFO: Loading pretrained model for Fusion head model [./DIF_Trained/diffusion.pth] ...
E:\Diffusion\Dif-Fusion-main\models\Fusion_model.py:172: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It
is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a futu
re release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via t
his mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=True for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
network.load_state_dict(torch.load(
Traceback (most recent call last):
File "t_fusion.py", line 68, in
fussion_net = Model.create_fusion_model(opt)
File "E:\Diffusion\Dif-Fusion-main\models__init__.py", line 14, in create_fusion_model
m = M(opt)
File "E:\Diffusion\Dif-Fusion-main\models\Fusion_model.py", line 45, in init
self.load_network()
File "E:\Diffusion\Dif-Fusion-main\models\Fusion_model.py", line 172, in load_network
network.load_state_dict(torch.load(
File "D:\AAnaconda\envs\diffusion\lib\site-packages\torch\nn\modules\module.py", line 2215, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for Fusion_Head:
Missing key(s) in state_dict: "decoder.0.block.0.weight", "decoder.0.block.0.bias", "decoder.0.block.2.weight", "decoder.0.block.2.bias", "decoder.1.block.0.weight", "decoder.1.block.0.bias", "decod
er.1.block.2.cSE.fc1.weight", "decoder.1.block.2.cSE.fc1.bias", "decoder.1.block.2.cSE.fc2.weight", "decoder.1.block.2.cSE.fc2.bias", "decoder.1.block.2.sSE.conv.weight", "decoder.1.block.2.sSE.conv.bias",
"decoder.2.block.0.weight", "decoder.2.block.0.bias", "decoder.2.block.2.weight", "decoder.2.block.2.bias", "decoder.3.block.0.weight", "decoder.3.block.0.bias", "decoder.3.block.2.cSE.fc1.weight", "decoder
.3.block.2.cSE.fc1.bias", "decoder.3.block.2.cSE.fc2.weight", "decoder.3.block.2.cSE.fc2.bias", "decoder.3.block.2.sSE.conv.weight", "decoder.3.block.2.sSE.conv.bias", "decoder.4.block.0.weight", "decoder.4
.block.0.bias", "decoder.4.block.2.weight", "decoder.4.block.2.bias", "decoder.5.block.0.weight", "decoder.5.block.0.bias", "decoder.5.block.2.cSE.fc1.weight", "decoder.5.block.2.cSE.fc1.bias", "decoder.5.b
lock.2.cSE.fc2.weight", "decoder.5.block.2.cSE.fc2.bias", "decoder.5.block.2.sSE.conv.weight", "decoder.5.block.2.sSE.conv.bias", "decoder.6.block.0.weight", "decoder.6.block.0.bias", "decoder.6.block.2.wei
ght", "decoder.6.block.2.bias", "decoder.7.block.0.weight", "decoder.7.block.0.bias", "decoder.7.block.2.cSE.fc1.weight", "decoder.7.block.2.cSE.fc1.bias", "decoder.7.block.2.cSE.fc2.weight", "decoder.7.blo
ck.2.cSE.fc2.bias", "decoder.7.block.2.sSE.conv.weight", "decoder.7.block.2.sSE.conv.bias", "decoder.8.block.0.weight", "decoder.8.block.0.bias", "decoder.8.block.2.weight", "decoder.8.block.2.bias", "rgb_decode2.conv.weight", "rgb_decode2.conv.bias", "rgb_decode1.conv.weight", "rgb_decode1.conv.bias".
Unexpected key(s) in state_dict: "betas", "alphas_cumprod", "alphas_cumprod_prev", "sqrt_alphas_cumprod", "sqrt_one_minus_alphas_cumprod", "log_one_minus_alphas_cumprod", "sqrt_recip_alphas_cumprod"
, "sqrt_recipm1_alphas_cumprod", "posterior_variance", "posterior_log_variance_clipped", "posterior_mean_coef1", "posterior_mean_coef2", "denoise_fn.noise_level_mlp.1.weight", "denoise_fn.noise_level_mlp.1.
bias", "denoise_fn.noise_level_mlp.3.weight", "denoise_fn.noise_level_mlp.3.bias", "denoise_fn.init_conv.weight", "denoise_fn.init_conv.bias", "denoise_fn.downs.0.res_block.noise_func.noise_func.0.weight",
"denoise_fn.downs.0.res_block.noise_func.noise_func.0.bias", "denoise_fn.downs.0.res_block.block1.block.0.weight", "denoise_fn.downs.0.res_block.block1.block.0.bias", "denoise_fn.downs.0.res_block.block1.bl
ock.3.weight", "denoise_fn.downs.0.res_block.block1.block.3.bias", "denoise_fn.downs.0.res_block.block2.block.0.weight", "denoise_fn.downs.0.res_block.block2.block.0.bias", "denoise_fn.downs.0.res_block.blo
ck2.block.3.weight", "denoise_fn.downs.0.res_block.block2.block.3.bias", "denoise_fn.downs.1.res_block.noise_func.noise_func.0.weight", "denoise_fn.downs.1.res_block.noise_func.noisefunc.0.bias", "denoise
fn.downs.1.res_block.block1.block.0.weight", "denoise_fn.downs.1.res_block.block1.block.0.bias", "denoise_fn.downs.1.res_block.block1.block.3.weight", "denoise_fn.downs.1.res_block.block1.block.3.bias", "de
noise_fn.downs.1.res_block.block2.block.0.weight", "denoise_fn.downs.1.res_block.block2.block.0.bias", "denoise_fn.downs.1.res_block.block2.block.3.weight", "denoise_fn.downs.1.res_block.block2.block.3.bias
", "denoise_fn.downs.2.conv.weight", "denoise_fn.downs.2.conv.bias", "denoise_fn.downs.3.res_block.noise_func.noise_func.0.weight", "denoise_fn.downs.3.res_block.noise_func.noise_func.0.bias", "denoise_fn.d
owns.3.res_block.block1.block.0.weight", "denoise_fn.downs.3.res_block.block1.block.0.bias", "denoise_fn.downs.3.res_block.block1.block.3.weight", "denoise_fn.downs.3.res_block.block1.block.3.bias", "denois
e_fn.downs.3.res_block.block2.block.0.weight", "denoise_fn.downs.3.res_block.block2.block.0.bias", "denoise_fn.downs.3.res_block.block2.block.3.weight", "denoise_fn.downs.3.res_block.block2.block.3.bias", "
denoise_fn.downs.3.res_block.res_conv.weight", "denoise_fn.downs.3.res_block.res_conv.bias", "denoise_fn.downs.4.res_block.noise_func.noise_func.0.weight", "denoise_fn.downs.4.res_block.noise_func.noise_fun
c.0.bias", "denoise_fn.downs.4.res_block.block1.block.0.weight", "denoise_fn.downs.4.res_block.block1.block.0.bias", "d
24-10-30 10:57:20.926 - INFO: Model [DDPM] is created. 24-10-30 10:57:20.926 - INFO: Initial Diffusion Model Finished 24-10-30 10:57:21.091 - INFO: Loading pretrained model for Fusion head model [./DIF_Trained/diffusion.pth] ... E:\Diffusion\Dif-Fusion-main\models\Fusion_model.py:172: FutureWarning: You are using
fussion_net = Model.create_fusion_model(opt)
File "E:\Diffusion\Dif-Fusion-main\models__init__.py", line 14, in create_fusion_model
m = M(opt)
File "E:\Diffusion\Dif-Fusion-main\models\Fusion_model.py", line 45, in init
self.load_network()
File "E:\Diffusion\Dif-Fusion-main\models\Fusion_model.py", line 172, in load_network
network.load_state_dict(torch.load(
File "D:\AAnaconda\envs\diffusion\lib\site-packages\torch\nn\modules\module.py", line 2215, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for Fusion_Head:
Missing key(s) in state_dict: "decoder.0.block.0.weight", "decoder.0.block.0.bias", "decoder.0.block.2.weight", "decoder.0.block.2.bias", "decoder.1.block.0.weight", "decoder.1.block.0.bias", "decod
er.1.block.2.cSE.fc1.weight", "decoder.1.block.2.cSE.fc1.bias", "decoder.1.block.2.cSE.fc2.weight", "decoder.1.block.2.cSE.fc2.bias", "decoder.1.block.2.sSE.conv.weight", "decoder.1.block.2.sSE.conv.bias",
"decoder.2.block.0.weight", "decoder.2.block.0.bias", "decoder.2.block.2.weight", "decoder.2.block.2.bias", "decoder.3.block.0.weight", "decoder.3.block.0.bias", "decoder.3.block.2.cSE.fc1.weight", "decoder
.3.block.2.cSE.fc1.bias", "decoder.3.block.2.cSE.fc2.weight", "decoder.3.block.2.cSE.fc2.bias", "decoder.3.block.2.sSE.conv.weight", "decoder.3.block.2.sSE.conv.bias", "decoder.4.block.0.weight", "decoder.4
.block.0.bias", "decoder.4.block.2.weight", "decoder.4.block.2.bias", "decoder.5.block.0.weight", "decoder.5.block.0.bias", "decoder.5.block.2.cSE.fc1.weight", "decoder.5.block.2.cSE.fc1.bias", "decoder.5.b
lock.2.cSE.fc2.weight", "decoder.5.block.2.cSE.fc2.bias", "decoder.5.block.2.sSE.conv.weight", "decoder.5.block.2.sSE.conv.bias", "decoder.6.block.0.weight", "decoder.6.block.0.bias", "decoder.6.block.2.wei
ght", "decoder.6.block.2.bias", "decoder.7.block.0.weight", "decoder.7.block.0.bias", "decoder.7.block.2.cSE.fc1.weight", "decoder.7.block.2.cSE.fc1.bias", "decoder.7.block.2.cSE.fc2.weight", "decoder.7.blo
ck.2.cSE.fc2.bias", "decoder.7.block.2.sSE.conv.weight", "decoder.7.block.2.sSE.conv.bias", "decoder.8.block.0.weight", "decoder.8.block.0.bias", "decoder.8.block.2.weight", "decoder.8.block.2.bias", "rgb_decode2.conv.weight", "rgb_decode2.conv.bias", "rgb_decode1.conv.weight", "rgb_decode1.conv.bias".
Unexpected key(s) in state_dict: "betas", "alphas_cumprod", "alphas_cumprod_prev", "sqrt_alphas_cumprod", "sqrt_one_minus_alphas_cumprod", "log_one_minus_alphas_cumprod", "sqrt_recip_alphas_cumprod"
, "sqrt_recipm1_alphas_cumprod", "posterior_variance", "posterior_log_variance_clipped", "posterior_mean_coef1", "posterior_mean_coef2", "denoise_fn.noise_level_mlp.1.weight", "denoise_fn.noise_level_mlp.1.
bias", "denoise_fn.noise_level_mlp.3.weight", "denoise_fn.noise_level_mlp.3.bias", "denoise_fn.init_conv.weight", "denoise_fn.init_conv.bias", "denoise_fn.downs.0.res_block.noise_func.noise_func.0.weight",
"denoise_fn.downs.0.res_block.noise_func.noise_func.0.bias", "denoise_fn.downs.0.res_block.block1.block.0.weight", "denoise_fn.downs.0.res_block.block1.block.0.bias", "denoise_fn.downs.0.res_block.block1.bl
ock.3.weight", "denoise_fn.downs.0.res_block.block1.block.3.bias", "denoise_fn.downs.0.res_block.block2.block.0.weight", "denoise_fn.downs.0.res_block.block2.block.0.bias", "denoise_fn.downs.0.res_block.blo
ck2.block.3.weight", "denoise_fn.downs.0.res_block.block2.block.3.bias", "denoise_fn.downs.1.res_block.noise_func.noise_func.0.weight", "denoise_fn.downs.1.res_block.noise_func.noisefunc.0.bias", "denoise
fn.downs.1.res_block.block1.block.0.weight", "denoise_fn.downs.1.res_block.block1.block.0.bias", "denoise_fn.downs.1.res_block.block1.block.3.weight", "denoise_fn.downs.1.res_block.block1.block.3.bias", "de
noise_fn.downs.1.res_block.block2.block.0.weight", "denoise_fn.downs.1.res_block.block2.block.0.bias", "denoise_fn.downs.1.res_block.block2.block.3.weight", "denoise_fn.downs.1.res_block.block2.block.3.bias
", "denoise_fn.downs.2.conv.weight", "denoise_fn.downs.2.conv.bias", "denoise_fn.downs.3.res_block.noise_func.noise_func.0.weight", "denoise_fn.downs.3.res_block.noise_func.noise_func.0.bias", "denoise_fn.d
owns.3.res_block.block1.block.0.weight", "denoise_fn.downs.3.res_block.block1.block.0.bias", "denoise_fn.downs.3.res_block.block1.block.3.weight", "denoise_fn.downs.3.res_block.block1.block.3.bias", "denois
e_fn.downs.3.res_block.block2.block.0.weight", "denoise_fn.downs.3.res_block.block2.block.0.bias", "denoise_fn.downs.3.res_block.block2.block.3.weight", "denoise_fn.downs.3.res_block.block2.block.3.bias", "
denoise_fn.downs.3.res_block.res_conv.weight", "denoise_fn.downs.3.res_block.res_conv.bias", "denoise_fn.downs.4.res_block.noise_func.noise_func.0.weight", "denoise_fn.downs.4.res_block.noise_func.noise_fun
c.0.bias", "denoise_fn.downs.4.res_block.block1.block.0.weight", "denoise_fn.downs.4.res_block.block1.block.0.bias", "d
torch.load
withweights_only=False
(the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a futu re release, the default value forweights_only
will be flipped toTrue
. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via t his mode unless they are explicitly allowlisted by the user viatorch.serialization.add_safe_globals
. We recommend you start settingweights_only=True
for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. network.load_state_dict(torch.load( Traceback (most recent call last): File "t_fusion.py", line 68, in