Closed arm-diaz closed 6 months ago
Hi @arm-diaz, you should be able to use Bedrock without problems. Check how to wrap your model on this page . If you are using Bedrock with langchain, check the "Wrap a LangChain object" tab, otherwise if you are using the SDK you can wrap your model as described in " Wrap a stand-alone LLM".
Feel free to reopen the issue if you run into problems or have doubts. Also, donβt hesitate to contact us on the Discord support channel.
EDIT: I misunderstood the request. The question was about running the LLM-assisted detector replacing GPT-4 with a Bedrock model.
This was released in https://github.com/Giskard-AI/giskard/releases/tag/v2.10.0 β
Edit: this brings support for custom LLM clients, so you're able to integrate Bedrock by creating your class. Native support is not yet implemented, but this solves the issue you mentioned
This was released in https://github.com/Giskard-AI/giskard/releases/tag/v2.10.0 β
Not yet
I haven't tested at all but something like this should work (for Claude 2):
class ClaudeBedrockClient(LLMClient):
def __init__(self, bedrock_client):
self._client = bedrock_client
def complete(
self,
messages: Sequence[ChatMessage],
temperature: float = 1,
max_tokens: Optional[int] = None,
caller_id: Optional[str] = None,
seed: Optional[int] = None,
format=None,
) -> ChatMessage:
# Create the prompt
prompt = ""
for msg in messages:
if msg.role.lower() == "assistant":
prefix = "\n\nAssistant: "
else:
prefix = "\n\nHuman: "
prompt += prefix + msg.content
prompt += "\n\nAssistant: "
# Create the body
params = {
"prompt": prompt,
"max_tokens_to_sample": max_tokens or 1000,
"temperature": temperature,
"top_p": 0.9,
}
body = json.dumps(params)
response = self._client.invoke_model(
body=body,
modelId=self._model_id,
accept="application/json",
contentType="application/json",
)
data = json.loads(response.get("body").read())
return ChatMessage(role="assistant", message=data["completion"])
Played around with this today. Got some good results with Haiku on a test dataset. Just started with only Claude3 versions as well as Titan embeddings. Will send in a PR in a little bit...
bedrock llm client
from typing import Optional, Sequence
import json
from ..config import LLMConfigurationError
from ..errors import LLMImportError
from . import LLMClient
from .base import ChatMessage
try:
import boto3 # noqa: F401
except ImportError as err:
raise LLMImportError(
flavor="llm", msg="To use Bedrock models, please install the `boto3` package with `pip install boto3`"
) from err
class ClaudeBedrockClient(LLMClient):
def __init__(self,
bedrock_runtime_client,
model: str = "anthropic.claude-3-sonnet-20240229-v1:0",
anthropic_version: str = "bedrock-2023-05-31"):
self._client = bedrock_runtime_client
self.model = model
self.anthropic_version = anthropic_version
def complete(
self,
messages: Sequence[ChatMessage],
temperature: float = 1,
max_tokens: Optional[int] = 1000,
caller_id: Optional[str] = None,
) -> ChatMessage:
# only supporting claude 3 to start
if 'claude-3' not in self.model:
raise LLMConfigurationError(
f"Only claude-3 models are supported as of now, got {self.model}"
)
# extract system prompt from messages
system_prompt = ""
if len(messages) > 1:
if messages[0].role.lower() == "user" and messages[1].role.lower() == "user":
system_prompt = messages[0].content
messages = messages[1:]
# Create the messages format needed for bedrock specifically
input_msg_prompt = []
for msg in messages:
if msg.role.lower() == "assistant":
input_msg_prompt.append(
{
"role": "assistant",
"content": [
{
"type": "text",
"text": msg.content
}
]
}
)
else:
input_msg_prompt.append(
{
"role": "user",
"content": [
{
"type": "text",
"text": msg.content
}
]
}
)
# create the json body to send to the API
body = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": max_tokens,
"temperature": temperature,
"system": system_prompt,
"messages": input_msg_prompt
})
# invoke the model and get the response
try:
accept = 'application/json'
contentType = 'application/json'
response = self._client.invoke_model(
body=body, modelId=self.model, accept=accept, contentType=contentType
)
completion = json.loads(response.get('body').read())
except RuntimeError as err:
raise LLMConfigurationError("Could not get response from Bedrock API") from err
self.logger.log_call(
prompt_tokens=completion['usage']['input_tokens'],
sampled_tokens=completion['usage']['input_tokens'],
model=self.model,
client_class=self.__class__.__name__,
caller_id=caller_id,
)
msg = completion['content'][0]['text']
return ChatMessage(role="assistant", content=msg)
bedrock embedding model
from typing import Sequence
import numpy as np
import json
from .base import BaseEmbedding
class BedrockEmbedding(BaseEmbedding):
def __init__(self, client, model: str):
"""
Parameters
----------
client : Bedrock
boto3 based Bedrock runtime client instance.
model : str
Model name.
"""
self.model = model
self.client = client
def embed(self, texts: Sequence[str]) -> np.ndarray:
if 'titan' not in self.model:
raise ValueError(f"Only titan embedding models are supported currently, got {self.model} instead")
if isinstance(texts, str):
texts = [texts]
accept = "application/json"
contentType = "application/json"
embeddings = []
for text in texts:
body = json.dumps({"inputText": text})
response = self.client.invoke_model(
body=body, modelId=self.model, accept=accept, contentType=contentType
)
response_body = json.loads(response.get("body").read())
embedding = response_body.get("embedding")
embeddings.append(embedding)
return np.array(embeddings)
end to end test
import os
import boto3
import pandas as pd
import giskard
from giskard.llm.client.bedrock import ClaudeBedrockClient
from giskard.llm.embeddings.bedrock import BedrockEmbedding
from giskard.rag import generate_testset, KnowledgeBase
from giskard.rag import QATestset
# setup the bedrock client and embedding model
bedrock_runtime = boto3.client("bedrock-runtime", region_name=os.environ["AWS_DEFAULT_REGION"])
oc = ClaudeBedrockClient(bedrock_runtime, model="anthropic.claude-3-haiku-20240307-v1:0")
embedding_model = BedrockEmbedding(bedrock_runtime, model="amazon.titan-embed-text-v1")
giskard.llm.set_default_client(oc)
# Load your data and initialize the KnowledgeBase
df = pd.read_csv("test_faqs.csv")
knowledge_base = KnowledgeBase(
data=df,
embedding_model=embedding_model,
)
# Generate a testset with 10 questions & answers for each question types (this will take a while)
testset = generate_testset(
knowledge_base,
num_questions=60,
language='en', # optional, we'll auto detect if not provided
agent_description="A customer support chatbot for Amazon SageMaker", # helps generating better questions
)
# Save the generated testset
testset.save("my_testset.jsonl")
# You can easily load it back
loaded_testset = QATestset.load("my_testset.jsonl")
# Convert it to a pandas dataframe
testset_df = loaded_testset.to_pandas()
π Feature Request
Users interested in running Giskard with Amazon Bedrock
π Motivation
Integrating Giskard with Amazon Bedrock would allow users to evaluate and provide more visibility on the LLM performance.
π° Question?
I would to hear more about the technical challenges or limitations that could prevent integrating Amazon Bedrock with Giskard. My goal is to get a better sense of the blocking factors, either from Bedrock API, Giskard's design, or simply integration complexity.