GoogleCloudPlatform / generative-ai

Sample code and notebooks for Generative AI on Google Cloud, with Gemini on Vertex AI
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview
Apache License 2.0
8.22k stars 2.32k forks source link

[Bug]: Gemini Function Calling raises "InternalServerError: 500 Internal error encountered" when the function includes an array of objects #418

Closed decision-dev closed 8 months ago

decision-dev commented 9 months ago

Contact Details

dev@chezrothman.com

File Name

gemini/function-calling/intro_function_calling.ipynb

What happened?

I modified the get_location function as follows:

get_location = FunctionDeclaration(
    name="get_locations",
    description="Get latitude and longitude for one or more locations",
    parameters={
        "type": "object",
        "properties": {
            "locations": {
                "type": "array",
                "description": "A list of locations",
                "items": {
                    "description": "The address",
                    "type": "object",
                    "properties": {
                        "poi": {"type": "string", "description": "Point of interest"},
                        "street": {"type": "string", "description": "Street name"},
                        "city": {"type": "string", "description": "City name"},
                        "county": {"type": "string", "description": "County name"},
                        "state": {"type": "string", "description": "State name"},
                        "country": {"type": "string", "description": "Country name"},
                        "postal_code": {"type": "string", "description": "Postal code"},
                    },
                }
            }
        }
    },
)

and I changed the prompt to be:

prompt = """
I want to get the lat/lon coordinates for the following addresses:
1600 Amphitheatre Pkwy, Mountain View, CA 94043, US
252 W 23rd St, New York, NY 10011, US
"""

It works if I use an array of strings like this:

get_location = FunctionDeclaration(
    name="get_locations",
    description="Get latitude and longitude for one or more locations",
    parameters={
        "type": "object",
        "properties": {
            "locations": {
                "type": "array",
                "description": "A list of locations",
                "items": {
                    "type": "string",
                    "description": "The address",
                }
            }
        }
    },
)

So the problem appears to be specifically with an array of objects.

Relevant log output

{
    "name": "InternalServerError",
    "message": "500 Internal error encountered.",
    "stack": "---------------------------------------------------------------------------
_InactiveRpcError                         Traceback (most recent call last)
File ~/.pyenv/versions/3.12.1/lib/python3.12/site-packages/google/api_core/grpc_helpers.py:79, in _wrap_unary_errors.<locals>.error_remapped_callable(*args, **kwargs)
     78 try:
---> 79     return callable_(*args, **kwargs)
     80 except grpc.RpcError as exc:

File ~/.pyenv/versions/3.12.1/lib/python3.12/site-packages/grpc/_channel.py:1160, in _UnaryUnaryMultiCallable.__call__(self, request, timeout, metadata, credentials, wait_for_ready, compression)
   1154 (
   1155     state,
   1156     call,
   1157 ) = self._blocking(
   1158     request, timeout, metadata, credentials, wait_for_ready, compression
   1159 )
-> 1160 return _end_unary_response_blocking(state, call, False, None)

File ~/.pyenv/versions/3.12.1/lib/python3.12/site-packages/grpc/_channel.py:1003, in _end_unary_response_blocking(state, call, with_call, deadline)
   1002 else:
-> 1003     raise _InactiveRpcError(state)

_InactiveRpcError: <_InactiveRpcError of RPC that terminated with:
\tstatus = StatusCode.INTERNAL
\tdetails = \"Internal error encountered.\"
\tdebug_error_string = \"UNKNOWN:Error received from peer ipv4:172.217.203.95:443 {created_time:\"2024-02-22T03:48:36.720350633+00:00\", grpc_status:13, grpc_message:\"Internal error encountered.\"}\"
>

The above exception was the direct cause of the following exception:

InternalServerError                       Traceback (most recent call last)
/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb Cell 38 line 7
      <a href='vscode-notebook-cell://970-cs-413906690854-default.cs-us-east1-rtep.cloudshell.dev/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb#X52sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0'>1</a> prompt = \"\"\"
      <a href='vscode-notebook-cell://970-cs-413906690854-default.cs-us-east1-rtep.cloudshell.dev/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb#X52sdnNjb2RlLXJlbW90ZQ%3D%3D?line=1'>2</a> I want to get the lat/lon coordinates for the following addresses:
      <a href='vscode-notebook-cell://970-cs-413906690854-default.cs-us-east1-rtep.cloudshell.dev/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb#X52sdnNjb2RlLXJlbW90ZQ%3D%3D?line=2'>3</a> 1600 Amphitheatre Pkwy, Mountain View, CA 94043, US
      <a href='vscode-notebook-cell://970-cs-413906690854-default.cs-us-east1-rtep.cloudshell.dev/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb#X52sdnNjb2RlLXJlbW90ZQ%3D%3D?line=3'>4</a> 252 W 23rd St, New York, NY 10011, US
      <a href='vscode-notebook-cell://970-cs-413906690854-default.cs-us-east1-rtep.cloudshell.dev/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb#X52sdnNjb2RlLXJlbW90ZQ%3D%3D?line=4'>5</a> \"\"\"
----> <a href='vscode-notebook-cell://970-cs-413906690854-default.cs-us-east1-rtep.cloudshell.dev/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb#X52sdnNjb2RlLXJlbW90ZQ%3D%3D?line=6'>7</a> response = model.generate_content(
      <a href='vscode-notebook-cell://970-cs-413906690854-default.cs-us-east1-rtep.cloudshell.dev/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb#X52sdnNjb2RlLXJlbW90ZQ%3D%3D?line=7'>8</a>     prompt,
      <a href='vscode-notebook-cell://970-cs-413906690854-default.cs-us-east1-rtep.cloudshell.dev/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb#X52sdnNjb2RlLXJlbW90ZQ%3D%3D?line=8'>9</a>     generation_config={\"temperature\": 0},
     <a href='vscode-notebook-cell://970-cs-413906690854-default.cs-us-east1-rtep.cloudshell.dev/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb#X52sdnNjb2RlLXJlbW90ZQ%3D%3D?line=9'>10</a>     tools=[location_tool],
     <a href='vscode-notebook-cell://970-cs-413906690854-default.cs-us-east1-rtep.cloudshell.dev/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb#X52sdnNjb2RlLXJlbW90ZQ%3D%3D?line=10'>11</a> )
     <a href='vscode-notebook-cell://970-cs-413906690854-default.cs-us-east1-rtep.cloudshell.dev/home/dev/generative-ai/gemini/function-calling/intro_function_calling.ipynb#X52sdnNjb2RlLXJlbW90ZQ%3D%3D?line=11'>12</a> response.candidates[0].content.parts[0]

File ~/.local/lib/python3.12/site-packages/vertexai/generative_models/_generative_models.py:354, in _GenerativeModel.generate_content(self, contents, generation_config, safety_settings, tools, stream)
    347     return self._generate_content_streaming(
    348         contents=contents,
    349         generation_config=generation_config,
    350         safety_settings=safety_settings,
    351         tools=tools,
    352     )
    353 else:
--> 354     return self._generate_content(
    355         contents=contents,
    356         generation_config=generation_config,
    357         safety_settings=safety_settings,
    358         tools=tools,
    359     )

File ~/.local/lib/python3.12/site-packages/vertexai/generative_models/_generative_models.py:435, in _GenerativeModel._generate_content(self, contents, generation_config, safety_settings, tools)
    412 \"\"\"Generates content.
    413 
    414 Args:
   (...)
    427     A single GenerationResponse object
    428 \"\"\"
    429 request = self._prepare_request(
    430     contents=contents,
    431     generation_config=generation_config,
    432     safety_settings=safety_settings,
    433     tools=tools,
    434 )
--> 435 gapic_response = self._prediction_client.generate_content(request=request)
    436 return self._parse_response(gapic_response)

File ~/.local/lib/python3.12/site-packages/google/cloud/aiplatform_v1beta1/services/prediction_service/client.py:2075, in PredictionServiceClient.generate_content(self, request, model, contents, retry, timeout, metadata)
   2072 self._validate_universe_domain()
   2074 # Send the request.
-> 2075 response = rpc(
   2076     request,
   2077     retry=retry,
   2078     timeout=timeout,
   2079     metadata=metadata,
   2080 )
   2082 # Done; return the response.
   2083 return response

File ~/.pyenv/versions/3.12.1/lib/python3.12/site-packages/google/api_core/gapic_v1/method.py:131, in _GapicCallable.__call__(self, timeout, retry, compression, *args, **kwargs)
    128 if self._compression is not None:
    129     kwargs[\"compression\"] = compression
--> 131 return wrapped_func(*args, **kwargs)

File ~/.pyenv/versions/3.12.1/lib/python3.12/site-packages/google/api_core/grpc_helpers.py:81, in _wrap_unary_errors.<locals>.error_remapped_callable(*args, **kwargs)
     79     return callable_(*args, **kwargs)
     80 except grpc.RpcError as exc:
---> 81     raise exceptions.from_grpc_error(exc) from exc

InternalServerError: 500 Internal error encountered."
}

Code of Conduct

holtskinner commented 9 months ago

@koverholt Can you take a look?

koverholt commented 9 months ago

Thanks @decision-dev for the detailed bug report. I tried a few fixes, but I kept running into the same error as you.

Since this repository deals mostly with sample notebooks and content rather than core model issues, I suggest opening a bug report in the Vertex AI issue tracker at: https://issuetracker.google.com/issues/new?component=1130925&template=1637248. When you open an issue, I can also comment in there as able to reproduce and forward to to the engineering team that works on function calling.

decision-dev commented 9 months ago

@koverholt When I click on the Vertex AI issue tracker link that you sent, I get a login screen asking me to authenticate with a google.com username. Is there a different link for non-google employees?

image

On Thu, Feb 22, 2024 at 1:51 PM Kristopher Overholt < @.***> wrote:

Thanks @decision-dev https://github.com/decision-dev for the detailed bug report. I tried a few fixes, but I kept running into the same error as you.

Since this repository deals mostly with sample notebooks and content rather than core model issues, I suggest opening a bug report in the Vertex AI issue tracker at: https://b.corp.google.com/issues/new?component=1130925&template=1637248. When you open an issue, I can also comment in there as able to reproduce and forward to to the engineering team that works on function calling.

— Reply to this email directly, view it on GitHub https://github.com/GoogleCloudPlatform/generative-ai/issues/418#issuecomment-1960057096, or unsubscribe https://github.com/notifications/unsubscribe-auth/ASABJOIQPR4P3S2U3FI2TN3YU6HT5AVCNFSM6AAAAABDUGONGWVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTSNRQGA2TOMBZGY . You are receiving this because you were mentioned.Message ID: @.***>

koverholt commented 9 months ago

Apologies, I used the wrong link in my initial post (which was sent in your email notification). I've edited the post to have the corrected link, which is https://issuetracker.google.com/issues/new?component=1130925&template=1637248.

decision-dev commented 9 months ago

@koverholt Thank you. I submitted the issue here https://issuetracker.google.com/326497502

koverholt commented 8 months ago

This has been fixed (and verified) upstream in https://issuetracker.google.com/326497502. Thanks for reporting!

juancalvof commented 8 months ago

With which versions this should be working? Continue having the error with what I think are latest versions:

google-cloud-aiplatform       1.43.0          Vertex AI API client library
google-generativeai           0.3.2           Google Generative AI High level API client library and tools.
google-ai-generativelanguage  0.4.0           Google Ai Generativelanguage API client library
koverholt commented 8 months ago

@juancalvof, it might be the case that this has not propagated to the cloud region you are using, I tested w/ us-central1. Could you update https://issuetracker.google.com/326497502 with information about the location, inputs, and outputs you are seeing?

juancalvof commented 8 months ago

Hello @koverholt! My apologies for not replying sooner. I was diverted to other matters and forgot about this.

The notebook works fine for me. Where I got the error is using Langchain. Langchain makes the call here in line 376 to send_message to end making the call to --> 435 gapic_response = self._prediction_client.generate_content(request=request) as the initial log output of this thread/issue.

Debugging I was able to get the tool from the request in this format:

[function_declarations {
  name: "query_bla"
  description: "    Input to this tool is a ....\"\"\"\n    "
  parameters {
    type_: OBJECT
    properties {
      key: "query"
      value {
        type_: STRING
        description: "bla, bla, bla"
      }
    }
    required: "query"
  }
}
]

I have updated the packages to last versions. My logging errors:

  File ".venv/lib/python3.11/site-packages/langchain_google_vertexai/chat_models.py", line 376, in _generate
    response = chat.send_message(
               ^^^^^^^^^^^^^^^^^^
  File ".venv/lib/python3.11/site-packages/vertexai/generative_models/_generative_models.py", line 723, in send_message
    return self._send_message(
           ^^^^^^^^^^^^^^^^^^^
  File ".venv/lib/python3.11/site-packages/vertexai/generative_models/_generative_models.py", line 810, in _send_message
    response = self._model._generate_content(
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File ".venv/lib/python3.11/site-packages/vertexai/generative_models/_generative_models.py", line 431, in _generate_content
    gapic_response = self._prediction_client.generate_content(request=request)
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File ".venv/lib/python3.11/site-packages/google/cloud/aiplatform_v1beta1/services/prediction_service/client.py", line 2080, in generate_content
    response = rpc(
               ^^^^
  File ".venv/lib/python3.11/site-packages/google/api_core/gapic_v1/method.py", line 131, in __call__
    return wrapped_func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File ".venv/lib/python3.11/site-packages/google/api_core/grpc_helpers.py", line 78, in error_remapped_callable
    raise exceptions.from_grpc_error(exc) from exc
google.api_core.exceptions.InternalServerError: 500 Internal error encountered.

I am using the same GCP project and location for both the notebook and Langchain use, so I understand it shouldn't be related to that.

Please let me know if you would like me to open a new issue. Thank you for your assistance and time! :)

juancalvof commented 8 months ago

Now Im super confuse.

My code works with an openAI model and my custom tool. My code works with an Gemini model and a default tool. My code returns the 500 internal error with a Gemini model and my custom tool.

koverholt commented 8 months ago

Hi @juancalvof,

Thanks for the info. It might be the case that your FunctionDeclaration is specifying types or a structure that is causing the API to give a 500 error. Hard to say without seeing the full code to reproduce. So that we can look at the specific details of your example, could you open a new issue at https://issuetracker.google.com/issues/new?component=1130925&template=1637248? Thanks!

GIDDY269 commented 8 months ago

I'm new to building agent and using llm, i am currently encountering a KeyError: 'agent'when initializing an AgentExecutor object in my Python script. Here's the traceback:, is there any way i could fix this:

KeyError                                  Traceback (most recent call last)
File [c:\Users\WORK\OneDrive\Documents\drug_order_chatbot\drug_bot.py:1](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/drug_bot.py:1)
----> [1](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/drug_bot.py:1) agent_executor = AgentExecutor(agent=agents,
      [2](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/drug_bot.py:2)                                memory=memory,
      [3](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/drug_bot.py:3)                               tools=image,
      [4](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/drug_bot.py:4)                               verbose=True,
      [5](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/drug_bot.py:5)                               return_intermediate_steps=True)

File [c:\Users\WORK\OneDrive\Documents\drug_order_chatbot\venv\lib\site-packages\langchain_core\load\serializable.py:120](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/langchain_core/load/serializable.py:120), in Serializable.__init__(self, **kwargs)
    [119](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/langchain_core/load/serializable.py:119) def __init__(self, **kwargs: Any) -> None:
--> [120](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/langchain_core/load/serializable.py:120)     super().__init__(**kwargs)
    [121](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/langchain_core/load/serializable.py:121)     self._lc_kwargs = kwargs

File [c:\Users\WORK\OneDrive\Documents\drug_order_chatbot\venv\lib\site-packages\pydantic\main.py:339](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/pydantic/main.py:339), in pydantic.main.BaseModel.__init__()

File [c:\Users\WORK\OneDrive\Documents\drug_order_chatbot\venv\lib\site-packages\pydantic\main.py:1102](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/pydantic/main.py:1102), in pydantic.main.validate_model()

File [c:\Users\WORK\OneDrive\Documents\drug_order_chatbot\venv\lib\site-packages\langchain\agents\agent.py:980](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/langchain/agents/agent.py:980), in AgentExecutor.validate_tools(cls, values)
    [978](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/langchain/agents/agent.py:978) """Validate that tools are compatible with agent."""
    [979](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/langchain/agents/agent.py:979) agent = values["agent"]
--> [980](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/langchain/agents/agent.py:980) tools = values["tools"]
    [981](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/langchain/agents/agent.py:981) allowed_tools = agent.get_allowed_tools()
    [982](file:///C:/Users/WORK/OneDrive/Documents/drug_order_chatbot/venv/lib/site-packages/langchain/agents/agent.py:982) if allowed_tools is not None:

KeyError: 'tools'

see part of my code here:


llm = ChatVertexAI(model_name='gemini-pro',temperature=0)

memory= ConversationBufferMemory(
                               memory_key='chat_history',output_key='output',return_messages=True)

# /// chat prompt

chat_prompt = ChatPromptTemplate(input_variables=['agent_scratchpad','chat_history','message'],
                                 messages=[
                                     HumanMessagePromptTemplate(
                                         prompt=PromptTemplate(
                                             input_variables=[],
                                             template= (
                                             '''You are a powerful and convincing salesperson '''),
                                         ),
                                     ),
                                     MessagesPlaceholder(variable_name='chat_history'),
                                     HumanMessagePromptTemplate(
                                         prompt=PromptTemplate(
                                             input_variables=['message'],
                                             template='{message}'
                                         ),
                                     ),
                                     MessagesPlaceholder(variable_name='agent_scratchpad')
                                 ],)

# /// Building converstional agent
chat_bot_with_tools = llm.bind(functions=[image])
agents = (
    {
        'message': lambda x : x['message'],
        'chat_history': lambda x:x['chat_history'],
        'agent_scratchpad': lambda x: format_to_openai_function_messages(x['intermediate_steps'])
    }
    | chat_prompt
    | chat_bot_with_tools
    | PydanticFunctionsOutputParser(pydantic_schema={
        image.name: image.args_schema
    })

)

agent_executor = AgentExecutor(agent=agents,
                              tools=image,
                              memory=memory,
                              verbose=True)
koverholt commented 8 months ago

@GIDDY269, it might be the case that the versions of packages that you are using such as google-cloud-aiplatform, langchain, and related are installed in a combination that is not working well together. It's difficult to say given the information that you've posted, but one thing to try is to ensure that you have the latest versions of those packages, then you can downgrade individual packages to see if you can get to a working state.

Many of the notebooks in this repository have known working versions of those packages pinned to work together. If you continue to have issues, feel free to open an issue at https://issuetracker.google.com/issues/new?component=1130925&template=1637248 so we can take a closer look. Thanks!

juancalvof commented 8 months ago

Thanks, @koverholt!

Below is the link to the issue along with my latest findings. I believe I've pinpointed the bug.

https://issuetracker.google.com/u/2/issues/331927553

koverholt commented 8 months ago

@juancalvof, thanks so much for opening that issue with details! I'll CC the appropriate engineering folks for Function Calling.

mr-chandan commented 6 months ago

@juancalvof any update on this ?

juancalvof commented 6 months ago

Hey! I continue having this issue when using https://python.langchain.com/v0.1/docs/modules/model_io/chat/structured_output/ but works with some other tools that some weeks ago were failing. I updated the issue: https://issuetracker.google.com/u/2/issues/331927553

jpohhhh commented 6 months ago

I believe it's just flakey, not that single words can make a difference.

Or, at least, there's a new bug present in 1.5.

I tried changing several things in mine and it'd "work", then I'd run it 3 times total, and it would not work.

Full request: https://pastebin.com/hcbqmR72