Models to perform neural summarization (extractive and abstractive) using machine learning transformers and a tool to convert abstractive summarization datasets to the extractive task.
Hi, I've got an error when fine tune Abstractive BART model
| Name | Type | Params
------------------------------------------------------------
0 | model | MBartForConditionalGeneration | 420 M
1 | loss_func | LabelSmoothingLoss | 0
------------------------------------------------------------
420 M Trainable params
0 Non-trainable params
420 M Total params
1,681.445 Total estimated model params size (MB)
Validation sanity check: 0%| | 0/2 [00:00<?, ?it/s]Traceback (most recent call last):
File "main.py", line 490, in <module>
main(main_args)
File "main.py", line 125, in main
trainer.fit(model)
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 552, in fit
self._run(model)
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 922, in _run
self._dispatch()
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 990, in _dispatch
self.accelerator.start_training(self)
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/accelerators/accelerator.py", line 92, in start_training
self.training_type_plugin.start_training(trainer)
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 161, in start_training
self._results = trainer.run_stage()
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1000, in run_stage
return self._run_train()
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1035, in _run_train
self._run_sanity_check(self.lightning_module)
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1122, in _run_sanity_check
self._evaluation_loop.run()
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 111, in advance
dataloader_iter, self.current_dataloader_idx, dl_max_batches, self.num_dataloaders
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 111, in advance
output = self.evaluation_step(batch, batch_idx, dataloader_idx)
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 158, in evaluation_step
output = self.trainer.accelerator.validation_step(step_kwargs)
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/accelerators/accelerator.py", line 211, in validation_step
return self.training_type_plugin.validation_step(*step_kwargs.values())
File "/data/env/train_env/lib/python3.7/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 178, in validation_step
return self.model.validation_step(*args, **kwargs)
File "/data/summary_to_title/transformersum/src/abstractive.py", line 709, in validation_step
cross_entropy_loss = self._step(batch)
File "/data/summary_to_title/transformersum/src/abstractive.py", line 694, in _step
outputs = self.forward(source, target, source_mask, target_mask, labels=labels)
File "/data/summary_to_title/transformersum/src/abstractive.py", line 256, in forward
loss = self.calculate_loss(prediction_scores, labels)
File "/data/summary_to_title/transformersum/src/abstractive.py", line 674, in calculate_loss
prediction_scores.view(-1, self.model.config.vocab_size), labels.view(-1)
File "/data/env/train_env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/data/summary_to_title/transformersum/src/helpers.py", line 282, in forward
return F.kl_div(output, model_prob, reduction="batchmean")
File "/data/env/train_env/lib/python3.7/site-packages/torch/nn/functional.py", line 2753, in kl_div
reduced = torch.kl_div(input, target, reduction_enum, log_target=log_target)
RuntimeError: The size of tensor a (64000) must match the size of tensor b (64001) at non-singleton dimension 1
Hi, I've got an error when fine tune Abstractive BART model
This is parameter when initialize