Closed zw-SIMM closed 1 year ago
Sure, your question can be addressed by referring to the way mentioned in this link: https://github.com/HICAI-ZJU/KANO#conducting-experiments-on-a-specified-dataset.
Here is a specific example of how to use a custom .csv file for fine-tuning or prediction:
python train.py \
--data_path $../your_train.csv$ \
--separate_test_path $../your_test.csv$ \
--separate_val_path $../your_val.csv$ \
--dataset_type $classification$ \
--epochs 100 \
--num_runs 1 \
--gpu 1 \
--batch_size 256 \
--step 'functional_prompt' \
--exp_name finetune \
--exp_id your_exp_id \
--checkpoint_path "./dumped/pretrained_graph_encoder/original_CMPN_0623_1350_14000th_epoch.pkl"
In this script, --data_path
, --separate_test_path
, and --separate_val_path
are the paths to your custom .csv files for training, testing, and validation, respectively.
Thanks for your rapid reply, I will try!
If I have a custom dataset .csv file, how can I use KANO for finetuning(this can refer finetune.sh) and predicting(not mentioned) ?