Object detection with multi-level representations generated from deep high-resolution representation learning (HRNetV2h). This is an official implementation for our TPAMI paper "Deep High-Resolution Representation Learning for Visual Recognition". https://arxiv.org/abs/1908.07919
When I use multi-gpu training(num_gpus>=2), error is "RuntimeError: all tensors must be on devices[0] ". Please help me if you guys can fix it!
Traceback (most recent call last):
File "tools/train.py", line 98, in
Traceback (most recent call last):
File "tools/train.py", line 98, in
main()
File "tools/train.py", line 94, in main
logger=logger)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/mmdet-0.6rc0+3493751-py3.6.egg/mmdet/apis/train.py", line 57, in train_detector
_dist_train(model, dataset, cfg, validate=validate)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/mmdet-0.6rc0+3493751-py3.6.egg/mmdet/apis/train.py", line 78, in _dist_train
main()
File "tools/train.py", line 94, in main
model = MMDistributedDataParallel(model.cuda())
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/distributed.py", line 217, in init
logger=logger)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/mmdet-0.6rc0+3493751-py3.6.egg/mmdet/apis/train.py", line 57, in train_detector
_dist_train(model, dataset, cfg, validate=validate)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/mmdet-0.6rc0+3493751-py3.6.egg/mmdet/apis/train.py", line 78, in _dist_train
self._ddp_init_helper()
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/distributed.py", line 232, in _ddp_init_helper
model = MMDistributedDataParallel(model.cuda())
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/distributed.py", line 217, in init
self._module_copies = replicate(self.module, self.device_ids, detach=True)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/replicate.py", line 13, in replicate
param_copies = Broadcast.apply(devices, params)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/_functions.py", line 21, in forward
self._ddp_init_helper()
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/distributed.py", line 232, in _ddp_init_helper
outputs = comm.broadcast_coalesced(inputs, ctx.target_gpus)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/cuda/comm.py", line 40, in broadcast_coalesced
self._module_copies = replicate(self.module, self.device_ids, detach=True)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/replicate.py", line 13, in replicate
return torch._C._broadcast_coalesced(tensors, devices, buffer_size)
RuntimeError: all tensors must be on devices[0]
param_copies = Broadcast.apply(devices, params)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/_functions.py", line 21, in forward
outputs = comm.broadcast_coalesced(inputs, ctx.target_gpus)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/cuda/comm.py", line 40, in broadcast_coalesced
return torch._C._broadcast_coalesced(tensors, devices, buffer_size)
RuntimeError: all tensors must be on devices[0]
When I use multi-gpu training(num_gpus>=2), error is "RuntimeError: all tensors must be on devices[0] ". Please help me if you guys can fix it!
Traceback (most recent call last): File "tools/train.py", line 98, in
Traceback (most recent call last):
File "tools/train.py", line 98, in
main()
File "tools/train.py", line 94, in main
logger=logger)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/mmdet-0.6rc0+3493751-py3.6.egg/mmdet/apis/train.py", line 57, in train_detector
_dist_train(model, dataset, cfg, validate=validate)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/mmdet-0.6rc0+3493751-py3.6.egg/mmdet/apis/train.py", line 78, in _dist_train
main()
File "tools/train.py", line 94, in main
model = MMDistributedDataParallel(model.cuda())
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/distributed.py", line 217, in init
logger=logger)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/mmdet-0.6rc0+3493751-py3.6.egg/mmdet/apis/train.py", line 57, in train_detector
_dist_train(model, dataset, cfg, validate=validate)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/mmdet-0.6rc0+3493751-py3.6.egg/mmdet/apis/train.py", line 78, in _dist_train
self._ddp_init_helper()
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/distributed.py", line 232, in _ddp_init_helper
model = MMDistributedDataParallel(model.cuda())
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/distributed.py", line 217, in init
self._module_copies = replicate(self.module, self.device_ids, detach=True)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/replicate.py", line 13, in replicate
param_copies = Broadcast.apply(devices, params)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/_functions.py", line 21, in forward
self._ddp_init_helper()
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/distributed.py", line 232, in _ddp_init_helper
outputs = comm.broadcast_coalesced(inputs, ctx.target_gpus)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/cuda/comm.py", line 40, in broadcast_coalesced
self._module_copies = replicate(self.module, self.device_ids, detach=True)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/replicate.py", line 13, in replicate
return torch._C._broadcast_coalesced(tensors, devices, buffer_size)
RuntimeError: all tensors must be on devices[0]
param_copies = Broadcast.apply(devices, params)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/nn/parallel/_functions.py", line 21, in forward
outputs = comm.broadcast_coalesced(inputs, ctx.target_gpus)
File "/home/by/APP/anaconda2/envs/hrnet-det/lib/python3.6/site-packages/torch/cuda/comm.py", line 40, in broadcast_coalesced
return torch._C._broadcast_coalesced(tensors, devices, buffer_size)
RuntimeError: all tensors must be on devices[0]