Open Gourimenon opened 5 years ago
The error with "bn.num_batches_tracked" is because you are using pytorch version >0.4.0. where a new BN parameter is added. Problems could occur if you use pytorch version >0.2.0. However, I think this is not the reason for your program to stop. Anyway, even if there is no bug, our code cannot perform well on higher versions of pytorch at this moment.
@Hangz-nju-cuhk Thank you for your reply. The issue was with the path to the video file. But unfortunately there is still some issues existing with audio.I would try what you suggested regarding the use of pytorch version< 0.4.0.
@Hangz-nju-cuhk
sorry, i got the similar error. but i have re-version the torch to 0.2.0
.
so is there any suggestion?
fyi:
command: python test_all.py --test_root ./0572_0019_0003.wav --test_type audio --test_audio_video_length 99 --test_resume_path ./checkpoints/101_DAVS_checkpoint.pth.tar
$ pip list
:
torch 0.2.0.post1
and the errors:
Traceback (most recent call last):
File "test_all.py", line 25, in <module>
model = Gen_Model.GenModel(opt)
File "/Users/xushenglai/Documents/tech/python/ai/Talking-Face-Generation-DAVS/Test_Gen_Models/Test_Audio_Model.py", line 31, in __init__
self.ID_encoder = IdentityEncoder.IdentityEncoder(opt)
File "/Users/xushenglai/Documents/tech/python/ai/Talking-Face-Generation-DAVS/network/IdentityEncoder.py", line 46, in __init__
self.add_module('block' + str(01), BasicBlock(3, 32, name="01", conv_std=0.025253814, kernel_size=7, stride=2, padding=3))
File "/Users/xushenglai/Documents/tech/python/ai/Talking-Face-Generation-DAVS/network/IdentityEncoder.py", line 21, in __init__
self.initial()
File "/Users/xushenglai/Documents/tech/python/ai/Talking-Face-Generation-DAVS/network/IdentityEncoder.py", line 34, in initial
nn.init.normal(m.weight, std=self.conv_std)
AttributeError: 'module' object has no attribute 'init'
# xushenglai @ bogon in ~/Documents/tech/python/ai/Talking-Face-Generation-DAVS on git:master x [16:11:03] C:1
$ pip unstall
# xushenglai @ bogon in ~/Documents/tech/python/ai/Talking-Face-Generation-DAVS on git:master x [16:11:21] C:130
$ pip uninstall torch
DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 won't be maintained after that date. A future version of pip will drop support for Python 2.7.
Uninstalling torch-0.1.12.post2:
Would remove:
/usr/local/lib/python2.7/site-packages/tools/*
/usr/local/lib/python2.7/site-packages/torch-0.1.12.post2.dist-info/*
/usr/local/lib/python2.7/site-packages/torch/*
Would not remove (might be manually added):
/usr/local/lib/python2.7/site-packages/torch/.serialization.py.swp
Proceed (y/n)? y
Successfully uninstalled torch-0.1.12.post2
# xushenglai @ bogon in ~/Documents/tech/python/ai/Talking-Face-Generation-DAVS on git:master x [16:11:25]
$ pip innstal
# xushenglai @ bogon in ~/Documents/tech/python/ai/Talking-Face-Generation-DAVS on git:master x [16:11:43] C:130
$ pip install torch-0.2.0.post1-cp27-none-macosx_10_7_x86_64.whl
DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 won't be maintained after that date. A future version of pip will drop support for Python 2.7.
Processing ./torch-0.2.0.post1-cp27-none-macosx_10_7_x86_64.whl
Requirement already satisfied: numpy in /usr/local/lib/python2.7/site-packages (from torch==0.2.0.post1) (1.16.5)
Requirement already satisfied: pyyaml in /usr/local/lib/python2.7/site-packages (from torch==0.2.0.post1) (5.2)
Installing collected packages: torch
Successfully installed torch-0.2.0.post1
# xushenglai @ bogon in ~/Documents/tech/python/ai/Talking-Face-Generation-DAVS on git:master x [16:11:49]
$ python test_all.py --test_root ./0572_0019_0003.wav --test_type audio --test_audio_video_length 99 --test_resume_path ./checkpoints/101_DAVS_checkpoint.pth.tar
---------- Networks initialized -------------
=> loading checkpoint './checkpoints/101_DAVS_checkpoint.pth.tar'
missing keys in state_dict: set(['block42.conv42_a_bn.running_var', 'block26.conv26_b_bn.bias', 'block41.conv41_a_bn.running_var', 'block1.conv01_b.weight', 'block1.conv01_a_bn.weight', 'block11.conv11_a_bn.weight', 'block32.conv32_a.bias', 'block32.conv32_b_bn.running_mean', 'block26.conv26_b_bn.running_mean', 'block26.conv26_b.weight', 'block31.conv31_b.weight', 'block34.conv34_b.weight', 'block42.conv42_b_bn.weight', 'block12.conv12_b_bn.running_var', 'block42.conv42_a_bn.weight', 'block32.conv32_b_bn.running_var', 'block13.conv13_b.bias', 'block26.conv26_a_bn.weight', 'block25.conv25_a_bn.weight', 'block12.conv12_b.weight', 'block34.conv34_a_bn.running_var', 'block31.conv31_b_bn.weight', 'block13.conv13_a_bn.bias', 'block41.conv41_a_bn.bias', 'block24.conv24_b_bn.running_var', 'block14.conv14_a_bn.running_var', 'block24.conv24_a_bn.bias', 'block42.conv42_b.bias', 'block41.conv41_b.weight', 'block31.conv31_a_bn.running_var', 'block34.conv34_b_bn.running_mean', 'block13.conv13_a_bn.running_var', 'block11.conv11_b_bn.running_mean', 'block1.conv01_b_bn.running_mean', 'block13.conv13_a.weight', 'block34.conv34_a_bn.bias', 'block25.conv25_b_bn.running_mean', 'block11.conv11_b_bn.running_var', 'block24.conv24_b.weight', 'block33.conv33_a.weight', 'block33.conv33_b.bias', 'block42.conv42_b_bn.running_var', 'block21.conv21_a.weight', 'block33.conv33_b_bn.bias', 'block13.conv13_b.weight', 'block31.conv31_a_bn.weight', 'block12.conv12_a_bn.running_var', 'block12.conv12_a.weight', 'block14.conv14_b_bn.running_var', 'block21.conv21_a_bn.weight', 'block11.conv11_b_bn.weight', 'block22.conv22_b_bn.bias', 'block33.conv33_b_bn.running_var', 'block12.conv12_b_bn.weight', 'block23.conv23_a.bias', 'block24.conv24_a.weight', 'block11.conv11_b.weight', 'block42.conv42_a_bn.bias', 'block22.conv22_a.weight', 'block26.conv26_a_bn.bias', 'block11.conv11_b_bn.bias', 'block42.conv42_b.weight', 'block33.conv33_a_bn.bias', 'block22.conv22_a_bn.running_var', 'block25.conv25_a_bn.bias', 'block21.conv21_b_bn.running_mean', 'block14.conv14_b_bn.running_mean', 'block1.conv01_a_bn.bias', 'block21.conv21_b.weight', 'block1.conv01_b_bn.bias', 'block24.conv24_a_bn.weight', 'block12.conv12_a.bias', 'block24.conv24_b.bias', 'block31.conv31_a.weight', 'block13.conv13_b_bn.weight', 'block14.conv14_a.weight', 'block25.conv25_b_bn.running_var', 'block11.conv11_a_bn.bias', 'block14.conv14_a.bias', 'block24.conv24_a_bn.running_var', 'block13.conv13_a_bn.weight', 'block25.conv25_a.bias', 'block11.conv11_a_bn.running_var', 'block21.conv21_a_bn.running_mean', 'block32.conv32_b_bn.weight', 'block1.conv01_b_bn.running_var', 'block12.conv12_a_bn.bias', 'block25.conv25_a_bn.running_var', 'block32.conv32_a_bn.bias', 'block26.conv26_a_bn.running_mean', 'block31.conv31_b_bn.running_mean', 'block33.conv33_a_bn.weight', 'block13.conv13_b_bn.running_mean', 'block21.conv21_a_bn.bias', 'block31.conv31_a.bias', 'block24.conv24_a.bias', 'block41.conv41_b_bn.bias', 'block41.conv41_a.bias', 'block12.conv12_a_bn.running_mean', 'block32.conv32_b.bias', 'block32.conv32_b_bn.bias', 'block14.conv14_b.weight', 'block22.conv22_b.bias', 'block21.conv21_b_bn.running_var', 'block22.conv22_b_bn.running_mean', 'block42.conv42_a.weight', 'block21.conv21_a.bias', 'block34.conv34_a_bn.running_mean', 'block26.conv26_a.bias', 'block32.conv32_a_bn.weight', 'block21.conv21_a_bn.running_var', 'block31.conv31_b_bn.bias', 'block23.conv23_a_bn.running_mean', 'block22.conv22_a.bias', 'block25.conv25_b_bn.bias', 'block34.conv34_a.weight', 'block31.conv31_b.bias', 'block26.conv26_a.weight', 'block34.conv34_b_bn.bias', 'block23.conv23_a_bn.bias', 'block12.conv12_b.bias', 'block26.conv26_a_bn.running_var', 'block41.conv41_a_bn.running_mean', 'block25.conv25_a.weight', 'block14.conv14_b_bn.weight', 'block13.conv13_b_bn.bias', 'block12.conv12_b_bn.running_mean', 'block11.conv11_a_bn.running_mean', 'block41.conv41_b_bn.running_mean', 'block34.conv34_b_bn.weight', 'block23.conv23_a_bn.weight', 'block12.conv12_a_bn.weight', 'block13.conv13_a_bn.running_mean', 'block22.conv22_b.weight', 'block32.conv32_a_bn.running_mean', 'block25.conv25_b_bn.weight', 'block22.conv22_a_bn.bias', 'block14.conv14_a_bn.bias', 'block14.conv14_b_bn.bias', 'block23.conv23_b_bn.running_var', 'block11.conv11_b.bias', 'block13.conv13_b_bn.running_var', 'block41.conv41_b_bn.running_var', 'block23.conv23_b.bias', 'block1.conv01_a.bias', 'block25.conv25_b.weight', 'block14.conv14_a_bn.running_mean', 'block21.conv21_b_bn.bias', 'block22.conv22_a_bn.weight', 'block11.conv11_a.bias', 'block34.conv34_b_bn.running_var', 'block33.conv33_a_bn.running_var', 'block26.conv26_b_bn.running_var', 'block21.conv21_b_bn.weight', 'block34.conv34_a.bias', 'block42.conv42_a.bias', 'block25.conv25_b.bias', 'block24.conv24_b_bn.running_mean', 'block41.conv41_b_bn.weight', 'block33.conv33_a.bias', 'block32.conv32_b.weight', 'block23.conv23_b.weight', 'block22.conv22_a_bn.running_mean', 'block14.conv14_b.bias', 'block23.conv23_b_bn.running_mean', 'block25.conv25_a_bn.running_mean', 'block26.conv26_b_bn.weight', 'block12.conv12_b_bn.bias', 'block33.conv33_b_bn.weight', 'block33.conv33_a_bn.running_mean', 'block14.conv14_a_bn.weight', 'block22.conv22_b_bn.running_var', 'block42.conv42_a_bn.running_mean', 'block1.conv01_b_bn.weight', 'block42.conv42_b_bn.running_mean', 'block1.conv01_a.weight', 'block1.conv01_b.bias', 'block23.conv23_a_bn.running_var', 'block24.conv24_a_bn.running_mean', 'block1.conv01_a_bn.running_var', 'block23.conv23_b_bn.bias', 'block33.conv33_b.weight', 'block31.conv31_a_bn.running_mean', 'block41.conv41_b.bias', 'block33.conv33_b_bn.running_mean', 'block21.conv21_b.bias', 'block42.conv42_b_bn.bias', 'block34.conv34_a_bn.weight', 'block31.conv31_a_bn.bias', 'block34.conv34_b.bias', 'block24.conv24_b_bn.bias', 'block22.conv22_b_bn.weight', 'block11.conv11_a.weight', 'block24.conv24_b_bn.weight', 'block23.conv23_b_bn.weight', 'block32.conv32_a.weight', 'block13.conv13_a.bias', 'block32.conv32_a_bn.running_var', 'block1.conv01_a_bn.running_mean', 'block26.conv26_b.bias', 'block23.conv23_a.weight', 'block41.conv41_a_bn.weight', 'block31.conv31_b_bn.running_var', 'block41.conv41_a.weight'])
missing keys in state_dict: set(['convblock2.conv2_0_bn.weight', 'deconv1_1_new.bias', 'convblock6.conv6_0_bn.weight', 'conv7_2.weight', 'convblock3.conv3_2_bn.running_var', 'convblock5.conv5_0_bn.running_var', 'convblock5.conv5_0.weight', 'convblock1.conv1_1.weight', 'convblock5.conv5_1.bias', 'convblock2.conv2_2_bn.bias', 'convblock5.conv5_0_bn.bias', 'convblock5.conv5_1_bn.weight', 'convblock1.conv1_0_bn.bias', 'convblock1.conv1_1.bias', 'convblock3.conv3_3.weight', 'convblock5.conv5_0_bn.running_mean', 'convblock3.conv3_1.bias', 'convblock4.conv4_3_bn.running_mean', 'convblock1.conv1_0_bn.running_var', 'convblock4.conv4_0_bn.running_var', 'convblock3.conv3_1.weight', 'convblock6.conv6_0_bn.bias', 'convblock4.conv4_0_bn.bias', 'convblock5.conv5_1_bn.running_mean', 'convblock2.conv2_0.weight', 'convblock2.conv2_2_bn.running_var', 'convblock4.conv4_3.weight', 'convblock4.conv4_1_bn.bias', 'convblock4.conv4_2_bn.bias', 'convblock4.conv4_0.bias', 'convblock5.conv5_2.weight', 'convblock5.conv5_0.bias', 'convblock5.conv5_2_bn.bias', 'convblock2.conv2_2.weight', 'convblock4.conv4_1_bn.running_var', 'deconv1_1_bn.bias', 'convblock3.conv3_2_bn.bias', 'convblock4.conv4_3_bn.bias', 'convblock3.conv3_3.bias', 'convblock3.conv3_3_bn.weight', 'convblock6.conv6_0_bn.running_var', 'convblock1.conv1_0_bn.running_mean', 'conv7_1_bn.bias', 'convblock4.conv4_2_bn.running_var', 'convblock5.conv5_1_bn.bias', 'convblock4.conv4_3.bias', 'convblock6.conv6_1.weight', 'convblock2.conv2_1.bias', 'convblock3.conv3_0_bn.running_mean', 'convblock4.conv4_1.weight', 'convblock3.conv3_0_bn.running_var', 'convblock5.conv5_2.bias', 'convblock4.conv4_2.weight', 'convblock3.conv3_1_bn.running_mean', 'convblock4.conv4_3_bn.running_var', 'convblock2.conv2_1_bn.weight', 'convblock4.conv4_2.bias', 'convblock3.conv3_3_bn.bias', 'convblock4.conv4_1_bn.weight', 'deconv1_1_new.weight', 'convblock3.conv3_2.bias', 'convblock2.conv2_2.bias', 'convblock1.conv1_0.bias', 'convblock5.conv5_1.weight', 'convblock2.conv2_2_bn.weight', 'convblock3.conv3_1_bn.weight', 'convblock6.conv6_1_bn.bias', 'convblock5.conv5_2_bn.running_var', 'convblock5.conv5_1_bn.running_var', 'convblock1.conv1_1_bn.running_var', 'convblock6.conv6_1_bn.running_mean', 'convblock3.conv3_2_bn.running_mean', 'convblock4.conv4_0.weight', 'convblock2.conv2_1_bn.running_var', 'convblock6.conv6_0.weight', 'convblock1.conv1_1_bn.bias', 'conv7_1_bn.weight', 'convblock6.conv6_1_bn.running_var', 'convblock2.conv2_1_bn.bias', 'convblock5.conv5_2_bn.weight', 'convblock5.conv5_2_bn.running_mean', 'convblock3.conv3_2.weight', 'conv7_1.bias', 'convblock4.conv4_1.bias', 'convblock3.conv3_3_bn.running_mean', 'convblock3.conv3_2_bn.weight', 'convblock6.conv6_1_bn.weight', 'conv7_1.weight', 'convblock1.conv1_0.weight', 'convblock3.conv3_1_bn.running_var', 'convblock2.conv2_0_bn.bias', 'convblock4.conv4_0_bn.weight', 'convblock3.conv3_3_bn.running_var', 'deconv1_1_bn.running_var', 'convblock3.conv3_0.bias', 'convblock1.conv1_1_bn.running_mean', 'conv7_2.bias', 'deconv1_1_bn.running_mean', 'convblock4.conv4_2_bn.weight', 'convblock6.conv6_0_bn.running_mean', 'convblock6.conv6_0.bias', 'convblock3.conv3_1_bn.bias', 'convblock2.conv2_0_bn.running_mean', 'convblock1.conv1_1_bn.weight', 'convblock1.conv1_0_bn.weight', 'convblock4.conv4_2_bn.running_mean', 'deconv1_1_bn.weight', 'convblock2.conv2_1_bn.running_mean', 'convblock4.conv4_0_bn.running_mean', 'convblock3.conv3_0.weight', 'convblock4.conv4_3_bn.weight', 'convblock2.conv2_2_bn.running_mean', 'conv7_1_bn.running_var', 'convblock2.conv2_0.bias', 'convblock2.conv2_1.weight', 'convblock6.conv6_1.bias', 'convblock3.conv3_0_bn.bias', 'convblock5.conv5_0_bn.weight', 'convblock3.conv3_0_bn.weight', 'convblock4.conv4_1_bn.running_mean', 'conv7_1_bn.running_mean', 'convblock2.conv2_0_bn.running_var'])
missing keys in state_dict: set(['model2.bn2.running_mean', 'model2.bn2.running_var', 'model2.conv3.weight', 'model2.bn1.running_var', 'model2.conv1.weight', 'model2.bn1.running_mean', 'model1.bn2.weight', 'model2.bn2.weight', 'model1.bn1.bias', 'model1.bn3.weight', 'model1.conv4.weight', 'model1.conv1.weight', 'model1.conv2.weight', 'fc.weight', 'model1.bn3.bias', 'model1.bn3.running_var', 'model2.bn1.bias', 'fc.bias', 'model1.bn3.running_mean', 'model1.bn1.running_mean', 'model1.bn1.running_var', 'model1.bn2.running_var', 'model1.bn2.running_mean', 'model1.bn2.bias', 'model1.conv3.weight', 'model1.bn1.weight', 'model2.conv2.weight', 'model2.bn2.bias', 'model2.bn1.weight', 'model1.bn5.weight', 'model1.bn5.bias', 'model1.bn5.running_mean', 'model1.bn5.running_var'])
missing keys in state_dict: set(['model.m0.b1_2.bn2.weight', 'model.conv4.bn2.running_mean', 'model.conv3.conv3.weight', 'model.top_m_0.bn1.running_mean', 'model.m0.b2_3.bn1.bias', 'model.m0.b1_2.bn3.running_mean', 'model.conv3.bn3.weight', 'model.m0.b1_1.bn2.running_mean', 'model.m0.b2_4.bn2.running_var', 'model.m0.b1_1.bn2.bias', 'model.bn_end0.bias', 'model.m0.b2_plus_1.bn3.weight', 'model.m0.b2_4.bn3.weight', 'model.m0.b2_2.bn1.running_var', 'model.m0.b2_1.bn3.running_mean', 'model.conv4.bn3.weight', 'model.m0.b1_3.bn3.running_var', 'model.conv3.bn1.bias', 'model.m0.b3_3.bn1.running_mean', 'model.m0.b1_3.bn1.running_mean', 'model.m0.b2_plus_1.conv1.weight', 'model.conv3.conv2.weight', 'model.m0.b1_1.conv2.weight', 'model.m0.b1_4.bn1.running_mean', 'model.m0.b2_2.bn3.running_var', 'model.conv3.bn1.weight', 'model.m0.b2_3.bn1.running_var', 'model.conv2.bn1.running_var', 'model.m0.b2_2.bn2.running_var', 'model.m0.b2_4.bn1.running_mean', 'model.m0.b2_3.bn2.bias', 'model.conv3.bn3.running_mean', 'model.l0.weight', 'model.m0.b2_plus_1.bn3.running_var', 'model.m0.b2_plus_1.bn2.running_mean', 'model.m0.b1_4.bn1.running_var', 'fc.weight', 'model.m0.b2_4.bn3.bias', 'model.m0.b2_1.bn2.weight', 'model.m0.b3_4.bn1.running_var', 'model.conv4.conv2.weight', 'model.m0.b2_2.bn3.weight', 'bn1.weight', 'model.conv4.bn1.running_mean', 'model.m0.b2_1.conv3.weight', 'model.conv2.bn2.bias', 'model.m0.b3_4.conv3.weight', 'model.top_m_0.bn2.running_mean', 'model.m0.b1_1.bn3.bias', 'model.m0.b1_4.conv2.weight', 'model.m0.b3_4.bn2.weight', 'model.m0.b1_3.bn2.bias', 'model.conv2.bn2.running_var', 'model.m0.b2_plus_1.bn3.running_mean', 'model.m0.b2_1.bn2.running_mean', 'model.conv4.downsample.2.weight', 'model.conv2.conv2.weight', 'model.m0.b1_1.conv1.weight', 'model.conv4.conv3.weight', 'model.m0.b2_1.conv1.weight', 'model.m0.b2_4.bn2.bias', 'model.m0.b1_3.bn2.weight', 'model.m0.b3_1.conv3.weight', 'model.m0.b2_3.bn3.weight', 'model.m0.b2_2.bn1.bias', 'model.bn_end0.running_var', 'model.conv4.bn2.weight', 'model.m0.b1_4.bn2.weight', 'model.m0.b1_3.bn2.running_mean', 'model.m0.b2_2.bn2.bias', 'model.m0.b1_2.bn3.bias', 'model.m0.b1_2.bn3.running_var', 'model.conv3.bn1.running_mean', 'model.m0.b2_3.conv3.weight', 'model.m0.b1_4.bn2.bias', 'model.m0.b1_4.bn3.running_mean', 'model.m0.b3_4.conv2.weight', 'model.conv2.bn2.weight', 'model.conv3.conv1.weight', 'model.m0.b1_2.bn3.weight', 'model.conv_last0.weight', 'model.m0.b1_2.bn2.running_var', 'model.m0.b3_1.bn3.running_mean', 'model.m0.b2_plus_1.bn2.weight', 'model.conv2.downsample.2.weight', 'model.conv4.bn3.running_mean', 'model.m0.b1_4.bn2.running_var', 'model.conv2.bn1.weight', 'model.conv4.bn1.bias', 'model.m0.b3_2.conv2.weight', 'model.bn1.bias', 'model.conv2.downsample.0.running_var', 'model.conv2.bn3.bias', 'model.top_m_0.bn3.weight', 'model.m0.b1_3.bn2.running_var', 'model.conv4.downsample.0.running_var', 'bn1.bias', 'model.fc.weight', 'model.m0.b3_3.bn3.running_var', 'model.m0.b2_2.bn2.running_mean', 'model.m0.b2_1.bn3.bias', 'model.m0.b3_1.bn1.bias', 'model.m0.b2_3.bn3.bias', 'model.m0.b1_2.bn1.running_var', 'model.m0.b2_2.conv3.weight', 'model.m0.b3_3.bn2.weight', 'model.m0.b2_4.conv3.weight', 'model.m0.b3_4.bn2.bias', 'model.m0.b1_3.conv1.weight', 'model.m0.b2_1.bn3.running_var', 'model.m0.b1_2.bn2.bias', 'model.m0.b1_2.bn1.running_mean', 'model.m0.b2_2.bn2.weight', 'model.m0.b2_3.bn1.weight', 'model.bn1.running_var', 'model.m0.b2_4.bn2.running_mean', 'model.conv2.conv3.weight', 'model.conv3.bn2.running_mean', 'model.m0.b3_3.conv2.weight', 'model.top_m_0.bn3.bias', 'model.m0.b3_1.bn3.weight', 'model.m0.b1_1.bn1.running_mean', 'model.m0.b3_1.bn2.bias', 'model.m0.b1_4.bn2.running_mean', 'model.conv2.bn3.weight', 'model.m0.b2_3.bn2.weight', 'model.conv2.downsample.0.bias', 'model.conv4.downsample.0.bias', 'model.conv6.bias', 'model.m0.b2_4.bn1.running_var', 'model.m0.b2_1.bn2.running_var', 'model.m0.b1_2.bn1.bias', 'model.m0.b2_plus_1.bn2.bias', 'model.conv2.bn2.running_mean', 'model.m0.b2_3.bn2.running_mean', 'model.m0.b1_3.conv3.weight', 'model.conv4.bn1.running_var', 'model.m0.b3_4.bn3.running_var', 'model.top_m_0.bn1.weight', 'model.conv2.bn3.running_var', 'model.m0.b1_3.bn1.running_var', 'conv6.bias', 'model.conv4.bn3.running_var', 'model.m0.b3_1.bn2.running_mean', 'model.bn1.running_mean', 'model.m0.b2_plus_1.bn1.bias', 'model.m0.b3_4.bn1.weight', 'model.m0.b3_4.bn2.running_mean', 'model.m0.b1_4.bn1.bias', 'model.top_m_0.bn1.running_var', 'model.m0.b2_2.bn3.running_mean', 'model.m0.b3_3.bn2.running_var', 'model.m0.b3_3.bn1.running_var', 'model.m0.b2_4.conv1.weight', 'model.m0.b2_1.bn1.bias', 'model.m0.b3_4.conv1.weight', 'model.m0.b2_4.bn2.weight', 'model.m0.b1_1.bn2.running_var', 'model.top_m_0.conv3.weight', 'model.conv2.bn1.running_mean', 'model.conv3.bn2.weight', 'fc.bias', 'model.m0.b1_3.bn1.bias', 'model.m0.b3_2.bn1.weight', 'model.m0.b3_1.bn1.running_mean', 'model.m0.b3_3.bn2.running_mean', 'model.m0.b2_1.bn1.running_var', 'model.m0.b3_2.bn2.weight', 'model.conv2.bn1.bias', 'model.m0.b3_1.bn1.running_var', 'model.top_m_0.bn2.weight', 'model.m0.b3_1.bn2.running_var', 'model.m0.b1_4.conv1.weight', 'model.m0.b3_3.conv3.weight', 'model.m0.b1_1.bn2.weight', 'model.m0.b1_2.conv2.weight', 'model.m0.b1_4.bn1.weight', 'model.m0.b1_4.bn3.weight', 'model.top_m_0.conv2.weight', 'model.m0.b1_3.bn3.weight', 'model.m0.b2_2.bn1.weight', 'model.top_m_0.bn3.running_var', 'model.top_m_0.bn1.bias', 'model.conv3.bn2.bias', 'model.m0.b2_2.conv1.weight', 'model.top_m_0.bn2.running_var', 'model.m0.b3_1.conv2.weight', 'model.m0.b3_1.conv1.weight', 'model.m0.b2_4.conv2.weight', 'model.m0.b3_2.bn1.bias', 'model.m0.b3_2.bn3.running_var', 'model.m0.b2_plus_1.conv3.weight', 'bn1.running_var', 'model.fc.bias', 'model.m0.b2_3.bn3.running_var', 'model.m0.b1_4.bn3.running_var', 'model.m0.b2_plus_1.bn3.bias', 'model.m0.b1_1.bn3.running_mean', 'model.m0.b3_3.bn1.weight', 'model.m0.b2_3.conv1.weight', 'model.m0.b2_2.bn1.running_mean', 'model.m0.b3_4.bn3.running_mean', 'model.conv4.bn2.running_var', 'model.m0.b3_2.bn3.running_mean', 'model.m0.b1_2.bn1.weight', 'model.m0.b3_1.bn1.weight', 'model.m0.b3_2.bn2.running_mean', 'model.m0.b2_1.conv2.weight', 'model.m0.b3_1.bn3.bias', 'model.m0.b1_3.bn1.weight', 'model.m0.b2_2.bn3.bias', 'model.m0.b2_plus_1.conv2.weight', 'model.m0.b3_2.bn2.bias', 'model.top_m_0.bn2.bias', 'model.m0.b2_plus_1.bn1.weight', 'model.conv1.weight', 'bn1.running_mean', 'model.conv5.weight', 'model.conv4.downsample.0.running_mean', 'model.m0.b2_3.bn2.running_var', 'model.m0.b1_2.conv1.weight', 'model.m0.b3_2.bn2.running_var', 'model.m0.b1_4.conv3.weight', 'model.conv3.bn3.bias', 'model.m0.b2_4.bn3.running_mean', 'model.m0.b2_3.bn3.running_mean', 'model.m0.b3_1.bn3.running_var', 'model.m0.b3_4.bn1.running_mean', 'model.m0.b1_1.bn1.running_var', 'model.conv4.bn3.bias', 'model.conv4.conv1.weight', 'model.m0.b2_plus_1.bn1.running_mean', 'model.m0.b1_1.conv3.weight', 'model.conv3.bn3.running_var', 'model.conv4.bn1.weight', 'model.m0.b1_3.bn3.running_mean', 'model.m0.b2_4.bn3.running_var', 'model.conv4.downsample.0.weight', 'model.m0.b2_1.bn3.weight', 'model.conv4.bn2.bias', 'model.conv2.conv1.weight', 'model.m0.b3_3.bn3.running_mean', 'model.m0.b1_4.bn3.bias', 'model.m0.b1_3.bn3.bias', 'model.conv_last0.bias', 'model.m0.b3_4.bn3.bias', 'model.m0.b1_1.bn3.weight', 'model.conv2.bn3.running_mean', 'model.m0.b2_1.bn1.running_mean', 'model.m0.b2_4.bn1.bias', 'model.top_m_0.bn3.running_mean', 'model.m0.b3_2.bn3.weight', 'model.bn_end0.weight', 'conv6.weight', 'model.conv1.bias', 'model.conv2.downsample.0.weight', 'model.conv3.bn2.running_var', 'model.m0.b1_3.conv2.weight', 'model.m0.b3_3.bn2.bias', 'model.conv5.bias', 'model.m0.b3_4.bn2.running_var', 'model.m0.b1_2.conv3.weight', 'model.m0.b3_2.conv3.weight', 'model.m0.b2_1.bn2.bias', 'model.m0.b2_1.bn1.weight', 'model.m0.b2_4.bn1.weight', 'model.m0.b3_2.bn1.running_mean', 'model.m0.b2_plus_1.bn1.running_var', 'model.m0.b2_plus_1.bn2.running_var', 'model.m0.b3_2.bn3.bias', 'model.bn1.weight', 'model.conv3.bn1.running_var', 'model.m0.b3_2.bn1.running_var', 'model.m0.b3_3.conv1.weight', 'model.m0.b3_3.bn3.bias', 'model.m0.b3_4.bn3.weight', 'model.m0.b3_4.bn1.bias', 'model.m0.b3_2.conv1.weight', 'model.m0.b2_3.conv2.weight', 'model.m0.b1_1.bn3.running_var', 'model.m0.b1_1.bn1.bias', 'model.m0.b3_3.bn3.weight', 'model.conv6.weight', 'model.m0.b3_3.bn1.bias', 'model.m0.b1_2.bn2.running_mean', 'model.m0.b1_1.bn1.weight', 'model.top_m_0.conv1.weight', 'model.m0.b2_2.conv2.weight', 'model.l0.bias', 'model.m0.b3_1.bn2.weight', 'model.conv2.downsample.0.running_mean', 'model.bn_end0.running_mean', 'model.m0.b2_3.bn1.running_mean'])
=> loaded checkpoint './checkpoints/101_DAVS_checkpoint.pth.tar' (step 21145000)
Traceback (most recent call last):
File "test_all.py", line 41, in <module>
for i2, data in enumerate(test_dataloader):
File "/usr/local/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 201, in __next__
return self._process_next_batch(batch)
File "/usr/local/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 221, in _process_next_batch
raise batch.exc_type(batch.exc_msg)
KeyError: 'Traceback (most recent call last):\n File "/usr/local/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 40, in _worker_loop\n samples = collate_fn([dataset[i] for i in batch_indices])\n File "/Users/xushenglai/Documents/tech/python/ai/Talking-Face-Generation-DAVS/Dataloader/Test_load_audio.py", line 103, in __getitem__\n loader[\'A\'] = self.vid[\'A\']\nKeyError: \'A\'\n'
thanks in advance.
i have the same problem but have not found a solution. @Hangz-nju-cuhk can you update the repo to support higher version of pytorch?
@yxt132 Yes I plan to do so within 3 months XD. But please do not have too much hope in me, as there are also other ongoing projects >_<.
I faced some problems when I tried loading checkpoint file. The error I got is:
loading checkpoint '/home/gouriparvathymenon/Downloads/101_DAVS_checkpoint.pth' missing keys in state_dict: set(['module.block33.conv33_a_bn.num_batches_tracked', 'module.block12.conv12_b_bn.num_batches_tracked', 'module.block13.conv13_a_bn.num_batches_tracked', 'module.block32.conv32_a_bn.num_batches_tracked', 'module.block32.conv32_b_bn.num_batches_tracked', 'module.block34.conv34_a_bn.num_batches_tracked', 'module.block31.conv31_a_bn.num_batches_tracked', 'module.block12.conv12_a_bn.num_batches_tracked', 'module.block1.conv01_a_bn.num_batches_tracked', 'module.block33.conv33_b_bn.num_batches_tracked', 'module.block11.conv11_a_bn.num_batches_tracked', 'module.block42.conv42_b_bn.num_batches_tracked', 'module.block13.conv13_b_bn.num_batches_tracked', 'module.block24.conv24_b_bn.num_batches_tracked', 'module.block23.conv23_a_bn.num_batches_tracked', 'module.block25.conv25_b_bn.num_batches_tracked', 'module.block22.conv22_a_bn.num_batches_tracked', 'module.block34.conv34_b_bn.num_batches_tracked', 'module.block11.conv11_b_bn.num_batches_tracked', 'module.block21.conv21_a_bn.num_batches_tracked', 'module.block23.conv23_b_bn.num_batches_tracked', 'module.block1.conv01_b_bn.num_batches_tracked', 'module.block31.conv31_b_bn.num_batches_tracked', 'module.block42.conv42_a_bn.num_batches_tracked', 'module.block14.conv14_b_bn.num_batches_tracked', 'module.block26.conv26_a_bn.num_batches_tracked', 'module.block25.conv25_a_bn.num_batches_tracked', 'module.block22.conv22_b_bn.num_batches_tracked', 'module.block14.conv14_a_bn.num_batches_tracked', 'module.block26.conv26_b_bn.num_batches_tracked', 'module.block41.conv41_a_bn.num_batches_tracked', 'module.block21.conv21_b_bn.num_batches_tracked', 'module.block24.conv24_a_bn.num_batches_tracked', 'module.block41.conv41_b_bn.num_batches_tracked']) missing keys in state_dict: set(['module.convblock3.conv3_1_bn.num_batches_tracked', 'module.convblock5.conv5_0_bn.num_batches_tracked', 'module.convblock4.conv4_2_bn.num_batches_tracked', 'module.convblock2.conv2_0_bn.num_batches_tracked', 'module.convblock2.conv2_2_bn.num_batches_tracked', 'module.convblock3.conv3_3_bn.num_batches_tracked', 'module.convblock1.conv1_0_bn.num_batches_tracked', 'module.convblock1.conv1_1_bn.num_batches_tracked', 'module.convblock5.conv5_2_bn.num_batches_tracked', 'module.convblock3.conv3_0_bn.num_batches_tracked', 'module.convblock6.conv6_1_bn.num_batches_tracked', 'module.convblock3.conv3_2_bn.num_batches_tracked', 'module.deconv1_1_bn.num_batches_tracked', 'module.convblock4.conv4_0_bn.num_batches_tracked', 'module.convblock4.conv4_1_bn.num_batches_tracked', 'module.convblock2.conv2_1_bn.num_batches_tracked', 'module.conv7_1_bn.num_batches_tracked', 'module.convblock5.conv5_1_bn.num_batches_tracked', 'module.convblock4.conv4_3_bn.num_batches_tracked', 'module.convblock6.conv6_0_bn.num_batches_tracked']) missing keys in state_dict: set(['module.model1.bn3.num_batches_tracked', 'module.model1.bn1.num_batches_tracked', 'module.model1.bn2.num_batches_tracked', 'module.model1.bn5.num_batches_tracked', 'module.model2.bn1.num_batches_tracked', 'module.model2.bn2.num_batches_tracked']) missing keys in state_dict: set(['module.model.conv4.bn2.num_batches_tracked', 'module.model.top_m_0.bn2.num_batches_tracked', 'module.model.m0.b1_2.bn2.num_batches_tracked', 'module.model.m0.b1_4.bn2.num_batches_tracked', 'module.model.m0.b1_2.bn1.num_batches_tracked', 'module.model.conv3.bn2.num_batches_tracked', 'module.model.m0.b1_4.bn1.num_batches_tracked', 'module.model.m0.b1_3.bn1.num_batches_tracked', 'module.model.conv2.bn2.num_batches_tracked', 'module.model.m0.b3_2.bn2.num_batches_tracked', 'module.model.m0.b1_4.bn3.num_batches_tracked', 'module.model.conv2.bn1.num_batches_tracked', 'module.model.m0.b2_plus_1.bn2.num_batches_tracked', 'module.model.m0.b3_3.bn1.num_batches_tracked', 'module.model.m0.b2_3.bn2.num_batches_tracked', 'module.model.m0.b2_2.bn2.num_batches_tracked', 'module.model.m0.b1_1.bn3.num_batches_tracked', 'module.model.m0.b2_1.bn2.num_batches_tracked', 'module.model.conv2.bn3.num_batches_tracked', 'module.model.conv4.bn1.num_batches_tracked', 'module.model.m0.b2_4.bn2.num_batches_tracked', 'module.model.m0.b3_3.bn3.num_batches_tracked', 'module.model.conv4.bn3.num_batches_tracked', 'module.model.m0.b3_1.bn3.num_batches_tracked', 'module.model.m0.b2_2.bn3.num_batches_tracked', 'module.model.conv3.bn1.num_batches_tracked', 'module.model.m0.b3_4.bn2.num_batches_tracked', 'module.model.m0.b2_4.bn1.num_batches_tracked', 'module.model.m0.b3_2.bn1.num_batches_tracked', 'module.model.m0.b1_1.bn1.num_batches_tracked', 'module.model.m0.b1_1.bn2.num_batches_tracked', 'module.model.m0.b2_1.bn3.num_batches_tracked', 'module.model.top_m_0.bn1.num_batches_tracked', 'module.model.m0.b3_2.bn3.num_batches_tracked', 'module.model.m0.b1_2.bn3.num_batches_tracked', 'module.bn1.num_batches_tracked', 'module.model.conv2.downsample.0.num_batches_tracked', 'module.model.m0.b2_1.bn1.num_batches_tracked', 'module.model.m0.b3_1.bn1.num_batches_tracked', 'module.model.m0.b2_3.bn3.num_batches_tracked', 'module.model.bn1.num_batches_tracked', 'module.model.m0.b1_3.bn3.num_batches_tracked', 'module.model.bn_end0.num_batches_tracked', 'module.model.m0.b2_2.bn1.num_batches_tracked', 'module.model.m0.b3_1.bn2.num_batches_tracked', 'module.model.conv4.downsample.0.num_batches_tracked', 'module.model.m0.b3_4.bn1.num_batches_tracked', 'module.model.m0.b2_4.bn3.num_batches_tracked', 'module.model.m0.b2_plus_1.bn1.num_batches_tracked', 'module.model.m0.b2_3.bn1.num_batches_tracked', 'module.model.top_m_0.bn3.num_batches_tracked', 'module.model.m0.b3_3.bn2.num_batches_tracked', 'module.model.m0.b2_plus_1.bn3.num_batches_tracked', 'module.model.conv3.bn3.num_batches_tracked', 'module.model.m0.b3_4.bn3.num_batches_tracked', 'module.model.m0.b1_3.bn2.num_batches_tracked']) => loaded checkpoint '/home/gouriparvathymenon/Downloads/101_DAVS_checkpoint.pth' (step 21145000) Traceback (most recent call last): File "test_all.py", line 41, in
for i2, data in enumerate(test_dataloader):
File "/home/gouriparvathymenon/.local/share/virtualenvs/gouriparvathymenon-vLhDFwnm/lib/avatar/local/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 637, in next
return self._process_next_batch(batch)
File "/home/gouriparvathymenon/.local/share/virtualenvs/gouriparvathymenon-vLhDFwnm/lib/avatar/local/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 658, in _process_next_batch
raise batch.exc_type(batch.exc_msg)
KeyError: 'Traceback (most recent call last):\n File "/home/gouriparvathymenon/.local/share/virtualenvs/gouriparvathymenon-vLhDFwnm/lib/avatar/local/lib/python2.7/site-packages/torch/utils/data/dataloader.py", line 138, in _worker_loop\n samples = collate_fn([dataset[i] for i in batch_indices])\n File "/home/gouriparvathymenon/PycharmProjects/avatar/Talking-Face-Generation-DAVS/Dataloader/Test_load_audio.py", line 103, in getitem\n loader[\'A\'] = self.vid[\'A\']\nKeyError: \'A\'\n'
The command I used was this:
python test_all.py --test_root 001.wav --test_type audio --test_audio_video_length 99 --test_resume_path 101_DAVS_checkpoint.pth.tar
Can someone help me find where i went wrong? Thanks in advance.