Open andkov opened 8 years ago
consider renaming clean+
into augment
knitr::kable(slice)
process | label | block | digit_tot | symbol | trailsb | pef |
---|---|---|---|---|---|---|
a | Intercept | 345.28(25.90), p<.01 | 347.88(25.15), p<.01 | 338.88(25.75), p<.01 | 344.53(25.99), p<.01 | 344.14(3.79) |
a | Slope | -28.93(6.91), p<.01 | -30.34(5.91), p<.01 | -25.21(8.42), p<.01 | -28.33(7.03), p<.01 | -28.20(2.17) |
a | Intercept * age | -4.31(1.82), p=.02 | -4.47(1.77), p=.01 | -4.13(1.83), p=.02 | -4.25(1.88), p=.02 | -4.29(0.14) |
a | Intercept * education | -2.15(2.73), p=.43 | -2.20(2.86), p=.44 | -1.63(2.76), p=.56 | -2.10(2.56), p=.41 | -2.02(0.26) |
a | Intercept * height | 0.46(1.28), p=.72 | 0.46(1.23), p=.71 | 0.26(1.21), p=.83 | 0.48(1.22), p=.69 | 0.42(0.11) |
a | Intercept * smoking | -0.55(13.18), p=.97 | -0.64(15.29), p=.97 | -0.14(15.61), p=.99 | -0.34(15.66), p=.98 | -0.42(0.22) |
a | Intercept * cardio | -21.32(33.26), p=.52 | -22.46(28.88), p=.44 | -23.26(31.20), p=.46 | -21.55(29.27), p=.46 | -22.15(0.89) |
a | Intercept * diabetes | -26.31(25.74), p=.31 | -26.06(25.15), p=.30 | -22.93(25.83), p=.38 | -26.56(24.53), p=.28 | -25.47(1.70) |
a | Slope * age | 0.18(0.43), p=.68 | 0.28(0.44), p=.53 | 0.10(0.62), p=.88 | 0.14(0.54), p=.80 | 0.17(0.08) |
a | Slope * education | 0.74(0.77), p=.34 | 0.74(0.72), p=.30 | 0.38(0.94), p=.68 | 0.68(0.74), p=.36 | 0.64(0.17) |
a | Slope * height | 0.60(0.26), p=.02 | 0.59(0.29), p=.04 | 0.68(0.41), p=.09 | 0.57(0.27), p=.04 | 0.61(0.05) |
a | Slope * smoking | 1.91(2.63), p=.47 | 1.97(2.98), p=.51 | 1.74(4.92), p=.72 | 1.89(3.69), p=.61 | 1.88(0.10) |
a | Slope * cardio | 2.32(10.07), p=.82 | 3.51(9.70), p=.72 | 3.28(12.12), p=.79 | 2.45(9.40), p=.79 | 2.89(0.59) |
a | Slope * diabetes | -0.53(8.71), p=.95 | -0.57(6.70), p=.93 | -2.34(9.13), p=.80 | -0.31(8.60), p=.97 | -0.94(0.94) |
b | Intercept | 18.99(2.49), p<.01 | 13.64(0.96), p<.01 | 40.61(3.40), p<.01 | 163.08(21.45), p<.01 | --- |
b | Slope | 0.78(0.47), p=.10 | 0.24(0.19), p=.19 | 0.60(0.68), p=.38 | 2.91(6.20), p=.64 | --- |
b | Intercept * age | -0.15(0.16), p=.37 | -0.07(0.07), p=.30 | -0.38(0.27), p=.17 | 1.81(1.45), p=.21 | --- |
b | Intercept * education | 0.88(0.26), p<.01 | 0.28(0.09), p<.01 | 1.79(0.36), p<.01 | -7.22(2.22), p<.01 | --- |
b | Intercept * height | -0.01(0.11), p=.91 | 0.03(0.04), p=.56 | 0.05(0.19), p=.78 | 0.10(0.88), p=.91 | --- |
b | Intercept * smoking | 1.52(1.44), p=.29 | 0.41(0.52), p=.43 | 2.19(1.95), p=.26 | -11.54(10.43), p=.27 | --- |
b | Intercept * cardio | -0.38(2.66), p=.89 | -0.33(1.10), p=.76 | -4.95(8.14), p=.54 | 26.85(19.19), p=.16 | --- |
b | Intercept * diabetes | -4.39(2.60), p=.09 | -1.59(0.82), p=.05 | -6.73(2.75), p=.01 | 31.07(16.68), p=.06 | --- |
b | Slope * age | -0.04(0.03), p=.18 | -0.01(0.02), p=.34 | -0.06(0.04), p=.09 | 0.20(0.34), p=.56 | --- |
b | Slope * education | -0.07(0.05), p=.17 | -0.02(0.02), p=.34 | -0.06(0.08), p=.44 | -0.11(0.62), p=.86 | --- |
b | Slope * height | -0.01(0.02), p=.66 | -0.01(0.01), p=.17 | 0.01(0.04), p=.89 | -0.00(0.21), p=.98 | --- |
b | Slope * smoking | -0.10(0.28), p=.72 | -0.02(0.12), p=.88 | 0.09(0.45), p=.83 | -0.32(2.73), p=.91 | --- |
b | Slope * cardio | -0.07(0.77), p=.93 | -0.11(0.36), p=.76 | 0.00(1.34), p=.99 | -1.92(6.48), p=.77 | --- |
b | Slope * diabetes | 0.18(0.44), p=.69 | 0.06(0.15), p=.70 | -0.26(0.52), p=.63 | 2.62(4.55), p=.56 | --- |
aa | Intercept | 4619.53(1051.84), p<.01 | 4601.03(1104.55), p<.01 | 4709.73(1105.26), p<.01 | 4630.56(1107.26), p<.01 | --- |
aa | Slope | 37.57(29.43), p=.20 | 32.13(28.48), p=.26 | 103.05(66.91), p=.12 | 39.51(32.43), p=.22 | --- |
a | Residual | 1701.95(104.59), p<.01 | 1703.62(122.04), p<.01 | 1625.48(95.71), p<.01 | 1693.29(88.95), p<.01 | 1681.09(37.34) |
bb | Intercept | 46.29(9.11), p<.01 | 5.85(1.38), p<.01 | 112.32(20.21), p<.01 | 2356.32(716.30), p<.01 | --- |
bb | Slope | 0.14(0.24), p=.55 | 0.05(0.04), p=.18 | 0.30(0.55), p=.59 | 5.91(19.07), p=.76 | --- |
b | Residual | 19.77(1.57), p<.01 | 2.39(0.23), p<.01 | 28.80(2.19), p<.01 | 1475.27(76.02), p<.01 | --- |
ab | Intercept(a) - Intercept(b) | 86.03(78.62), p=.27 | -24.44(27.64), p=.38 | 215.86(120.89), p=.07 | -781.69(661.61), p=.24 | --- |
ab | Slope(a) - Slope(b) | 0.36(2.06), p=.86 | -0.61(0.96), p=.53 | 2.80(4.40), p=.52 | -0.54(29.25), p=.98 | --- |
aa | Intercept(a) - Slope(a) | -303.65(136.78), p=.03 | -281.39(136.38), p=.04 | -390.70(223.92), p=.08 | -306.53(168.09), p=.07 | --- |
bb | Intercept(b) - Slope(b) | -0.93(1.45), p=.52 | 0.03(0.16), p=.84 | -1.71(2.88), p=.55 | 44.85(135.15), p=.74 | --- |
Some code adapted from REDCapR to calculate the positions of the colums to show in each subtable (after it's been split to fit on a printed page).
batch_size <- 6 #Only show six studies in each printed table.
left_side <- c("a", "b")
column_names <- letters[1:20]
outcome_columns <- setdiff(column_names, left_side)#Pretend these are the names of the outcome columns
column_outcome_count <- length(outcome_columns)
start_index <- base::seq.int(from=1, to=column_outcome_count, by=batch_size)
ds_batch <- data.frame(
id = seq_along(start_index),
start_index = start_index
)
ds_batch$stop_index <- base::mapply(
function(i) base::ifelse(i<length(start_index), start_index[i+1]-1, column_outcome_count),
ds_batch$id
)
> ds_batch
id start_index stop_index
1 1 1 6
2 2 7 12
3 3 13 18
Primary stage
After estimating equivalent forms of statistical models against the data from individual longitudinal studies participating in the current CAR workshop, model outputs (stored in
.out
files generated by MPlus) are uploaded to the shared folder. The following three scripts process these model results, preparing them for secondary analysis.0-ellis-island.R
- reaches into individual model outputs and extracts model solution and other relevant information.1-rename-classify.R
- harmonized the names of the variables across studies.2-compute-bisr-ci.R
- computes correlations (and confidence intervals) among intercepts, slopes, and residuals (optional, some models compute these parameters during estimation)Secondary stage
After parsing results from all submitted models, correcting input, and computing additional indices, we arrived at the secondary analysis stage, in which the results of of the models will be tabulated and organized according to the current research agenda. The following scripts start from the same point and arrive at different information displays of tabulated results:
3a-compile-model-tables.R
- produces tables that contain the full information from individual models. Organized by individual studies.3b-compile-curve-tables.R
- produces tables that for each study aggregate growth curve estimates across models using the same processes (e.g.grip-mmse
,grip-speed
,grip-digits_forward
: estimates forgrip
would be averaged across 3 contexts)3c-compile-correlation-tables.R
- produces tables that contain model-level information about two indices of interest: correlation between the slopes of the two processes in a bivariate pair and their respective intercepts.Data flow diagram