/opt/conda/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /usr/local/src/pytorch/aten/src/ATen/native/TensorShape.cpp:3483.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
final text_encoder_type: bert-base-uncased
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias']
This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
_IncompatibleKeys(missing_keys=[], unexpected_keys=['label_enc.weight'])
/opt/conda/lib/python3.10/site-packages/transformers/modeling_utils.py:768: FutureWarning: The device argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/opt/conda/lib/python3.10/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn("None of the inputs have requires_grad=True. Gradients will be None")
!python grounded_sam_demo.py \ --config GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py \ --grounded_checkpoint groundingdino_swint_ogc.pth \ --sam_checkpoint sam_vit_h_4b8939.pth \ --input_image assets/demo1.jpg \ --output_dir "outputs" \ --box_threshold 0.3 \ --text_threshold 0.25 \ --text_prompt "bear" \ --device "cuda"
/opt/conda/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /usr/local/src/pytorch/aten/src/ATen/native/TensorShape.cpp:3483.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] final text_encoder_type: bert-base-uncased Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias']
device
argument is deprecated and will be removed in v5 of Transformers. warnings.warn( /opt/conda/lib/python3.10/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None warnings.warn("None of the inputs have requires_grad=True. Gradients will be None")