Open Mukil07 opened 1 year ago
Fixed it by replacing
model.load_state_dict(clean_state_dict(checkpoint['ema_model']), strict=False)
with
model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
.
Seems like you may be evaluating a randomly initialized model.
Amazing work !! I just wanted to benchmark it on coco. I was running your zero shot evaluation code with SwinT backbone
CUDA_VISIBLE_DEVICES=0 \ python demo/test_ap_on_coco.py \ -c groundingdino/config/GroundingDINO_SwinT_OGC.py \ -p weights/groundingdino_swint_ogc.pth \ --anno_path /home/c3-0/datasets/coco/annotations/instances_val2017.json \ --image_dir /home/c3-0/datasets/coco/val2017
I was getting this error,
Traceback (most recent call last): File "demo/test_ap_on_coco.py", line 233, in
main(args)
File "demo/test_ap_on_coco.py", line 145, in main
model = load_model(args.config_file, args.checkpoint_path)
File "demo/test_ap_on_coco.py", line 29, in load_model
model.load_state_dict(clean_state_dict(checkpoint['ema_model']), strict=False)
KeyError: 'ema_model'
When i remove the "ema_model" key in the test_ap_on_coco.py. Im getting all zeros during evaluation .
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 Final results: [7.943160017818097e-10, 7.943160017818096e-09, 0.0, 0.0, 2.655844983639995e-08, 0.0, 0.0, 0.0, 4.41696113074205e-06, 0.0, 1.524390243902439e-05, 0.0]
Could you please look into this. Thank you