Open yzbx opened 6 years ago
pytorch experiment on cityscapes dataset
model | optimizer | learning rate | miou train | miou val |
---|---|---|---|---|
pspnet 100 epoch | adam | 0.0001 | 0.80 | 0.55 |
pspnet 100 epoch | sgd | 0.01 | 0.76 | 0.53 |
pspnet 200 epoch | sgd | 0.01 | 0.80 | 0.54 |
sgd with 200 epoch, but the miou is on 100/200 epoch for poly learning rate schedule adam with 100 epoch
pytorch experiment on cityscapes dataset
model | optimizer | learning rate | miou train | miou val |
---|---|---|---|---|
pspnet | adam | 0.0001 | 0.80 | 0.55 |
pspnet | sgd | 0.01 | 0.76 | 0.53 |
sgd with 200 epoch, but the miou is on 100 epoch for poly learning rate schedule adam with 100 epoch
pytorch + cityscapes
bug
: psp_edge not support poly sgd, use adam default
model | epoch | note | date | train | val |
---|---|---|---|---|---|
psp_edge | 200 | base | 2018/09/01 | 0.81 | 0.53 |
psp_edge | 80 | base | 2018/09/01 | 0.74 | 0.51 |
psp_edge | 160 | ignore_index | 2018/09/02 | 0.87 | 0 |
psp_edge | 80 | ignore_index | 2018/09/02 | 0.82 | 0.50 |
psp_edge | 80 | poly edge weight | 2018/09/03 | 0.82 | 0.50 |
psp_edge | 200 | poly edge weight | 2018/09/03 | 0.86 | 0 |
psp_edge | 200 | overfit0.5**2 | 2018/09/03 | 0.8+ | 0 |
psp_edge | 200 | balance_weight | 2018/09/06 | 0.76 | 0.50 |
psp_edge | 200 | edge_lass_num4 | 2018/09/06 | 0.79 | 0.53 |
psp_edge | 200 | ignore_edge | 2018/09/08 | ? | ? |
note | step | date | train | val |
---|---|---|---|---|
edge_class_num4 | 30k | 2018-09-06 | 0.27 | 0.40 |
train_with_eval | 30k | 2018-09-06 | 0.24 | 0.40 |
ignore_edge_new | 30k | 2018-09-08 | ? | ? |
model | backbone | epoch | date | train | val |
---|---|---|---|---|---|
pspnet | resnet50 | 200 | 2018/09/08 | ? | ? |
pspnet | resnet101 | 200 | 2018/09/08 | ? | ? |
edge_seg_order | date | epoch | train | val |
---|---|---|---|---|
edge512_first | 2018/09/13 | 200 | 0.7534 | 0.4889 |
edge512_later | 2018/09/11 | 200 | 0.7198 | 0.4633 |
edge_first | 2018/09/11 | 200 | 0.6623 | 0.4671 |
edge_later | 2018/09/10 | 200 | 0.6960 | 0.4621 |
edge_same | 2018/09/09 | 200 | 0.7571 | 0.4629 |
edge type | date | epoch | train | val |
---|---|---|---|---|
semantic edge | 2018/09/14 | 200 | 0.7415 | 0.5106 |
canny edge + semantic edge | 2018/09/15 | 200 | 0.7563 | 0.5188 |
merge type | epoch | train | val |
---|---|---|---|
cross merge 0 | 100 | 0.7677 | 0.5169 |
cross merge 1 | 100 | 0.7362 | 0.5086 |
cross merge 2 | 100 | 0.7568 | 0.4975 |
merge_seg | 200 | 0.8558 | 0.5397 |
for norm_ways in pytorch cityscapes -1,1 0,1 caffe
do
python test/pspnet_test.py --batch_size=4 --net_name=pspnet \
--augmentation=True --learning_rate=0.001 --optimizer=adam \
--backbone_name=resnet50 --backbone_freeze=False --midnet_scale=15 \
--upsample_type=bilinear --backbone_pretrained=True --n_epoch=50 \
--note=${norm_ways} --norm_ways=${norm_ways}
done
train/iou val/iou note
0 0.459440 0.403973 caffe
1 0.460660 0.405963 pytorch
2 0.463188 0.416964 cityscapes
3 0.460112 0.400258 -1,1
4 0.460654 0.401508 0,1
for lr in 5e-4 5e-5 2e-4 2e-5
do
python test/pspnet_test.py --batch_size=4 --net_name=pspnet --backbone_freeze=False \
--midnet_scale=15 --upsample_type=bilinear --backbone_pretrained=True --n_epoch=50 \
--note=cityscapes_$lr --norm_ways=cityscapes --learning_rate=$lr
done
note | learning rate | time | best train/iou | best val/iou |
---|---|---|---|---|
naive_bn4_aug_T | - | 2018/08/09 | 0.763474 | 0.488097 |
cityscapes | 1e-3 | 2018/09/29 | 0.463188 | 0.416964 |
cityscapes | 1e-4 | 2018/09/30 | 0.723264 | 0.528135 |
cityscapes_x | 2e-4 | - | 0.687637 | 0.528059 |
cityscapes_x | 5e-4 | - | 0.560245 | 0.477189 |
cityscapes_x | 2e-5 | - | 0.697064 | 0.534142 |
cityscapes_x | 5e-5 | - | 0.714838 | 0.537532 |
python test/pspnet_test.py --batch_size=4 --net_name=pspnet --backbone_freeze=False \
--midnet_scale=15 --upsample_type=bilinear --backbone_pretrained=True --n_epoch=50 \
--note=wo_lr_mult --norm_ways=cityscapes --use_lr_mult=False
python test/pspnet_test.py --batch_size=4 --net_name=pspnet --backbone_freeze=False \
--midnet_scale=15 --upsample_type=bilinear --backbone_pretrained=True --n_epoch=50 \
--note=w_lr_mult --norm_ways=cityscapes --use_lr_mult=True
use lr mult | best train miou | best val miou |
---|---|---|
True | 0.718 | 0.532 |
False | 0.738 | 0.526 |
note=cityscapes*
note | time | epoch | best train miou | best val miou |
---|---|---|---|---|
nw_cityscpaes | 2018-10-09 | 100 | 0.788829 | 0.529173 |
note | train/iou | val/iou | n_epoch |
---|---|---|---|
bn2_wo_batchnorm | 0.750111 | 0.527493 | 100 |
bn4_wo_batchnorm | 0.772401 | 0.521195 | 100 |
bs2_wo_bn_city | 0.752197 | 0.523592 | 100 |
train/iou | val/iou | note | n_epoch | |
---|---|---|---|---|
0 | 0.822187 | 0.523619 | bn2_sgd200_nwpytorch | 200 |
1 | 0.842374 | 0.544636 | bn2_sgd200_nwcity | 200 |
2 | 0.847756 | 0.55307 | bn2_sgd200_nwcaffe | 200 |
train/iou | val/iou | note | n_epoch | |
---|---|---|---|---|
3 | 0.659751 | 0.489004 | bn12_nw_pytorch | 30 |
1 | 0.662099 | 0.492727 | bn12_nw_caffe | 30 |
5 | 0.657091 | 0.493804 | bn12_nw_pytorch | 30 |
2 | 0.661716 | 0.50363 | bn12_nw_caffe | 30 |
0 | 0.663704 | 0.516348 | bn12_nw_caffe | 30 |
4 | 0.660641 | 0.524681 | bn12_nw_pytorch | 30 |
view hyeropt 016 for detail for edge weight = 0.1, 0.2, 0.5, 1.0 max miou = 0.03 compare to 0.38 for pspnet without edge in the same condition
dataset size, note | train/iou | val/iou |
---|---|---|
(320, 'use_bn_017') | 0.788159 | 0.381482 |
(320, 'wo_bn_015') | 0.77847 | 0.383078 |
(320, 'wo_bn_016') | 0.02894 | 0.031192 |
miou for cityscapes val dataset
offical result
miou for voc val dataset