Open yzbx opened 5 years ago
python test/pspnet_test.py --backbone_name=vgg16_gn --use_momentum=True --batch_size=4 --upsample_layer=3 --midnet_scale=10 --use_lr_mult=False --net_name=fcn --note=fcn8_vgg16
python test/pspnet_test.py --backbone_name=vgg16_gn --use_momentum=True --batch_size=4 --upsample_layer=4 --midnet_scale=10 --use_lr_mult=False --net_name=fcn --note=fcn16_vgg16
python test/pspnet_test.py --backbone_name=vgg16_gn --use_momentum=True --batch_size=4 --upsample_layer=5 --midnet_scale=10 --use_lr_mult=False --net_name=fcn --note=fcn32_vgg16
network | mean iou |
---|---|
fcn8_vgg16 | 0.482 |
network | miou | note |
---|---|---|
fcn8_vgg19 | 0.498 | fcn8_vgg19 |
fcn16_vgg19 | 0.577 | fcn8_vgg19 |
fcn32_vgg19 | 0.588 | fcn8_vgg19 |
python test/pspnet_test.py --backbone_name=vgg19_gn --use_none_layer=True --batch_size=4 --upsample_layer=5 --upsample_type=fcn --midnet_scale=10 --use_lr_mult=False --net_name=fcn --note=fcn32_vgg16_fcn
python test/pspnet_test.py --backbone_name=vgg19_gn --use_none_layer=True --batch_size=4 --upsample_layer=3,4,5 --midnet_scale=10 --use_lr_mult=False --net_name=fcn --note=fcn_vgg19
python test/pspnet_test.py --backbone_name=vgg19_gn --use_none_layer=True --batch_size=4 --upsample_layer=3,4,5 --upsample_type=fcn --midnet_scale=10 --use_lr_mult=False --net_name=fcn --note=fcn_vgg19_fcn
train/iou | val/iou | note | backbone_name | upsample_layer | midnet_scale | n_epoch | |
---|---|---|---|---|---|---|---|
3 | 0.837138 | 0.408618 | vgg19_bn_psp | vgg19_bn | 4 | 10 | 100 |
14 | 0.55358 | 0.473572 | vgg16_fz_psp | vgg16 | 5 | 10 | 100 |
2 | 0.602388 | 0.481789 | fcn8_vgg16 | vgg16_gn | 3 | 10 | 100 |
15 | 0.578943 | 0.487695 | cls_wise_vgg16 | vgg16 | 5 | 15 | 100 |
12 | 0.684266 | 0.523931 | vgg11_psp | vgg11 | 4 | 10 | 100 |
10 | 0.664645 | 0.539331 | vgg19_gn | vgg19_gn | 3 | 10 | 100 |
7 | 0.666785 | 0.539916 | vgg19_gn_nopre | vgg19_gn | 3 | 15 | 100 |
1 | 0.711822 | 0.560617 | fcn16_vgg16 | vgg16_gn | 4 | 10 | 100 |
11 | 0.808483 | 0.578575 | lr4_lr20_vgg16 | vgg16 | 5 | 15 | 100 |
9 | 0.70724 | 0.580211 | vgg16_gn | vgg16_gn | 4 | 10 | 100 |
16 | 0.797704 | 0.585897 | lr4_lr20_vgg19 | vgg19 | 5 | 15 | 100 |
4 | 0.71189 | 0.588305 | vgg16_gn32 | vgg16_gn | 4 | 10 | 100 |
6 | 0.72956 | 0.589235 | vgg16_bn | vgg16_bn | 4 | 10 | 100 |
0 | 0.722444 | 0.592189 | fcn32_vgg16 | vgg16_gn | 5 | 10 | 100 |
5 | 0.668338 | 0.593148 | vgg19_freeze3_5 | vgg19_bn | 5 | 10 | 100 |
8 | 0.704294 | 0.599245 | vgg19_gn_nopre | vgg19_gn | 4 | 15 | 100 |
13 | 0.701463 | 0.622954 | vgg16_duc | vgg16_bn | 4 | 10 | 100 |
train/iou | val/iou | note | backbone_name | upsample_layer | midnet_scale | n_epoch | |
---|---|---|---|---|---|---|---|
2 | 0.602388 | 0.481789 | fcn8_vgg16 | vgg16_gn | 3 | 10 | 100 |
1 | 0.711822 | 0.560617 | fcn16_vgg16 | vgg16_gn | 4 | 10 | 100 |
0 | 0.722444 | 0.592189 | fcn32_vgg16 | vgg16_gn | 5 | 10 | 100 |
official implement
backbone network is vgg16 backbone pretrained = true backbone freeze = false batch_size=20 input size=500x500 optimizer = sgd(1e-4) + momentum(0.9) weight decay=5^-4 or 2^-4 double learning rate for bias (not recommend) zero-initialize the class scoring layer (not recommend) train 3 days in single gpu for fcn32(miou=59.4) finetune fcn32 for 1 day, got fcn16(miou=62.4) finetune fcn16 for 1 day, got fcn8(miou=62.7) upsample type = bilinear + deconv(init by bilinear)
official finds
class balancing unnecessary augmentation yielded no noticeable improvement training sensitive to learning rate alone
fcn series
upper bound miou and downsample factor