Open IsadoraBM opened 3 years ago
Good point! {sjPlot}
does it correctly. I will try to fix this ASAP.
library(tidyverse)
library(bife)
test <- iris %>%
mutate(LengthDummy = if_else(Sepal.Length > 5, "Long", "Short") %>% as_factor(.)) %>%
bife(LengthDummy ~ Sepal.Width + Petal.Length + Petal.Width |
Species, data = ., "logit")
parameters::parameters(test)
#> # Fixed Effects
#>
#> Parameter | Log-Odds | SE | 95% CI | z | p
#> -----------------------------------------------------------------
#> Sepal Width | -9.46 | 2.76 | [-14.86, -4.05] | -3.43 | < .001
#> Petal Length | -5.37 | 2.02 | [ -9.32, -1.42] | -2.67 | 0.008
#> Petal Width | -0.64 | 3.46 | [ -7.42, 6.13] | -0.19 | 0.852
#>
#> Uncertainty intervals (equal-tailed) and p values (two-tailed) computed using a
#> Wald z-distribution approximation.
ggstatsplot::ggcoefstats(test)
sjPlot::plot_model(test)
Created on 2022-01-31 by the reprex package (v2.0.1.9000)
Model terms are presented in inverse order to dataframe. e.g Sepal.Width 1st, Petal.Width last in summary, but Petal.Width is on top in plot.
sort = "ascending"
sorts in effect size terms, but there is no equivalent tofct_rev
to sort by model's order.