IntelRealSense / librealsense

Intel® RealSense™ SDK
https://www.intelrealsense.com/
Apache License 2.0
7.61k stars 4.83k forks source link

Example of IR stereo image output and IMU #12264

Closed Userpc1010 closed 1 year ago

Userpc1010 commented 1 year ago
Required Info
Camera Model { D455 }
Firmware Version (5.15.0.2)
Operating System & Version { Linux (Ubuntu 20.04)}
Kernel Version (Linux Only) (5.15.0-83-generic)
Platform PC
SDK Version { v 2.54.1 }
Language {C/C++/opencv/ }
Segment { others }

Issue Description

I'm trying to output IR stereo image and imu data with OpenCV imshow, but I only get a dark screen:

#include <signal.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <fstream>
#include <chrono>
#include <ctime>
#include <sstream>

#include <condition_variable>

#include <opencv2/opencv.hpp>

#include <librealsense2/rs.hpp>
#include "librealsense2/rsutil.h"

using namespace std;

rs2_vector interpolateMeasure(const double target_time, const rs2_vector current_data, const double current_time, const rs2_vector prev_data, const double prev_time);

int main() {

    double offset = 0; // ms

    // Declare RealSense pipeline, encapsulating the actual device and sensors
    rs2::pipeline pipe;
    // Create a configuration for configuring the pipeline with a non default profile
    rs2::config cfg;
    cfg.enable_stream(RS2_STREAM_INFRARED, 1, 848, 480, RS2_FORMAT_Y8, 30);
    cfg.enable_stream(RS2_STREAM_INFRARED, 2, 848, 480, RS2_FORMAT_Y8, 30);
    //cfg.enable_stream(RS2_STREAM_ACCEL, RS2_FORMAT_MOTION_XYZ32F, 200);
    //cfg.enable_stream(RS2_STREAM_GYRO, RS2_FORMAT_MOTION_XYZ32F, 200);

    // IMU callback
    std::mutex imu_mutex;
    std::condition_variable cond_image_rec;
    vector<double> v_gyro_timestamp;
    vector<rs2_vector> v_gyro_data;

    double prev_accel_timestamp = 0;
    rs2_vector prev_accel_data;
    double current_accel_timestamp = 0;
    rs2_vector current_accel_data;
    vector<double> v_accel_timestamp_sync;
    vector<rs2_vector> v_accel_data_sync;

    cv::Mat imCV, imRightCV;
    int width_img, height_img;
    double timestamp_image = -1.0;
    bool image_ready = false;
    int count_im_buffer = 0; // count dropped frames

    auto imu_callback = [&](const rs2::frame& frame)
    {
        std::unique_lock<std::mutex> lock(imu_mutex);

        if(rs2::frameset fs = frame.as<rs2::frameset>())
        {
//            count_im_buffer++;

//            double new_timestamp_image = fs.get_timestamp()*1e-3;
//            if(abs(timestamp_image-new_timestamp_image)<0.001){
//                std::cout << "Two frames with the same timeStamp!!!\n";
//                count_im_buffer--;
//                return;
//            }

            rs2::video_frame ir_frameL = fs.get_infrared_frame(1);
            assert(ir_frameL);
            rs2::video_frame ir_frameR = fs.get_infrared_frame(2);
            assert(ir_frameR);

            imCV = cv::Mat(cv::Size(848, 480), CV_8UC1, (void*)(ir_frameL.get_data()), cv::Mat::AUTO_STEP);
            imRightCV = cv::Mat(cv::Size(848, 480), CV_8UC1, (void*)(ir_frameR.get_data()), cv::Mat::AUTO_STEP);

            //cv::imshow("img_l", imCV);
            //cv::imshow("img_r", imRightCV);

            timestamp_image = fs.get_timestamp()*1e-3;
            image_ready = true;

//            while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size())
//            {

//                int index = v_accel_timestamp_sync.size();
//                double target_time = v_gyro_timestamp[index];

//                v_accel_data_sync.push_back(current_accel_data);
//                v_accel_timestamp_sync.push_back(target_time);
//            }

            lock.unlock();
            cond_image_rec.notify_all();
        }
        else if (rs2::motion_frame m_frame = frame.as<rs2::motion_frame>())
        {
            if (m_frame.get_profile().stream_name() == "Gyro")
            {
                // It runs at 200Hz
                v_gyro_data.push_back(m_frame.get_motion_data());
                v_gyro_timestamp.push_back((m_frame.get_timestamp()+offset)*1e-3);
                //rs2_vector gyro_sample = m_frame.get_motion_data();
                //std::cout << "Gyro:" << gyro_sample.x << ", " << gyro_sample.y << ", " << gyro_sample.z << std::endl;
            }
            else if (m_frame.get_profile().stream_name() == "Accel")
            {
                // It runs at 60Hz
                prev_accel_timestamp = current_accel_timestamp;
                prev_accel_data = current_accel_data;

                current_accel_data = m_frame.get_motion_data();
                current_accel_timestamp = (m_frame.get_timestamp()+offset)*1e-3;

                while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size())
                {
                    int index = v_accel_timestamp_sync.size();
                    double target_time = v_gyro_timestamp[index];

                    rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp,
                                                                prev_accel_data, prev_accel_timestamp);

                    v_accel_data_sync.push_back(interp_data);
                    v_accel_timestamp_sync.push_back(target_time);

                }
                // std::cout << "Accel:" << current_accel_data.x << ", " << current_accel_data.y << ", " << current_accel_data.z << std::endl;
            }
        }
    };

    rs2::pipeline_profile pipe_profile = pipe.start(cfg, imu_callback);

    rs2::stream_profile cam_left = pipe_profile.get_stream(RS2_STREAM_INFRARED, 1);
    rs2::stream_profile cam_right = pipe_profile.get_stream(RS2_STREAM_INFRARED, 2);

//    rs2::stream_profile imu_stream = pipe_profile.get_stream(RS2_STREAM_GYRO);
//    float* Rbc = cam_left.get_extrinsics_to(imu_stream).rotation;
//    float* tbc = cam_left.get_extrinsics_to(imu_stream).translation;
//    std::cout << "Tbc (left) = " << std::endl;
//    for(int i = 0; i<3; i++){
//        for(int j = 0; j<3; j++)
//            std::cout << Rbc[i*3 + j] << ", ";
//        std::cout << tbc[i] << "\n";
//    }

    float* Rlr = cam_right.get_extrinsics_to(cam_left).rotation;
    float* tlr = cam_right.get_extrinsics_to(cam_left).translation;
    std::cout << "Tlr  = " << std::endl;
    for(int i = 0; i<3; i++){
        for(int j = 0; j<3; j++)
            std::cout << Rlr[i*3 + j] << ", ";
        std::cout << tlr[i] << "\n";
    }

    rs2_intrinsics intrinsics_left = cam_left.as<rs2::video_stream_profile>().get_intrinsics();
    width_img = intrinsics_left.width;
    height_img = intrinsics_left.height;
    std::cout << "Left camera: \n";
    std::cout << " fx = " << intrinsics_left.fx << std::endl;
    std::cout << " fy = " << intrinsics_left.fy << std::endl;
    std::cout << " cx = " << intrinsics_left.ppx << std::endl;
    std::cout << " cy = " << intrinsics_left.ppy << std::endl;
    std::cout << " height = " << intrinsics_left.height << std::endl;
    std::cout << " width = " << intrinsics_left.width << std::endl;
    std::cout << " Coeff = " << intrinsics_left.coeffs[0] << ", " << intrinsics_left.coeffs[1] << ", " <<
        intrinsics_left.coeffs[2] << ", " << intrinsics_left.coeffs[3] << ", " << intrinsics_left.coeffs[4] << ", " << std::endl;
    std::cout << " Model = " << intrinsics_left.model << std::endl;

    rs2_intrinsics intrinsics_right = cam_right.as<rs2::video_stream_profile>().get_intrinsics();
    width_img = intrinsics_right.width;
    height_img = intrinsics_right.height;
    std::cout << "Right camera: \n";
    std::cout << " fx = " << intrinsics_right.fx << std::endl;
    std::cout << " fy = " << intrinsics_right.fy << std::endl;
    std::cout << " cx = " << intrinsics_right.ppx << std::endl;
    std::cout << " cy = " << intrinsics_right.ppy << std::endl;
    std::cout << " height = " << intrinsics_right.height << std::endl;
    std::cout << " width = " << intrinsics_right.width << std::endl;
    std::cout << " Coeff = " << intrinsics_right.coeffs[0] << ", " << intrinsics_right.coeffs[1] << ", " <<
        intrinsics_right.coeffs[2] << ", " << intrinsics_right.coeffs[3] << ", " << intrinsics_right.coeffs[4] << ", " << std::endl;
    std::cout << " Model = " << intrinsics_right.model << std::endl;

//    float imageScale = 1.0f;

    double timestamp;
    cv::Mat im, imRight;

    // Clear IMU vectors
    v_gyro_data.clear();
    v_gyro_timestamp.clear();
    v_accel_data_sync.clear();
    v_accel_timestamp_sync.clear();

    while (true)
    {
        std::vector<rs2_vector> vGyro;
        std::vector<double> vGyro_times;
        std::vector<rs2_vector> vAccel;
        std::vector<double> vAccel_times;

        {
            std::unique_lock<std::mutex> lk(imu_mutex);
            if(!image_ready)
            cond_image_rec.wait(lk);

//            if(count_im_buffer>1)
//            std::cout << count_im_buffer -1 << " dropped frs\n";
//            count_im_buffer = 0;

            while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size())
            {
                int index = v_accel_timestamp_sync.size();
                double target_time = v_gyro_timestamp[index];

                rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp);

                v_accel_data_sync.push_back(interp_data);
                // v_accel_data_sync.push_back(current_accel_data); // 0 interpolation
                v_accel_timestamp_sync.push_back(target_time);
            }

            // Copy the IMU data
            vGyro = v_gyro_data;
            vGyro_times = v_gyro_timestamp;
            vAccel = v_accel_data_sync;
            vAccel_times = v_accel_timestamp_sync;
            timestamp = timestamp_image;
            im = imCV.clone();
            imRight = imRightCV.clone();

            // Clear IMU vectors
            v_gyro_data.clear();
            v_gyro_timestamp.clear();
            v_accel_data_sync.clear();
            v_accel_timestamp_sync.clear();

            image_ready = false;
        }

//        if(imageScale != 1.f)
//        {
//            int width = im.cols * imageScale;
//            int height = im.rows * imageScale;
//            cv::resize(im, im, cv::Size(width, height));
//            cv::resize(imRight, imRight, cv::Size(width, height));
//        }

        cv::imshow("img_l", im);
        cv::imshow("img_r", imRight);

        std::cout << "loop!\n";

    }
    std::cout << "System shutdown!\n";
}

rs2_vector interpolateMeasure(const double target_time,
                              const rs2_vector current_data, const double current_time,
                              const rs2_vector prev_data, const double prev_time)
{

    // If there are not previous information, the current data is propagated
    if(prev_time == 0)
    {
        return current_data;
    }

    rs2_vector increment;
    rs2_vector value_interp;

    if(target_time > current_time) {
        value_interp = current_data;
    }
    else if(target_time > prev_time)
    {
        increment.x = current_data.x - prev_data.x;
        increment.y = current_data.y - prev_data.y;
        increment.z = current_data.z - prev_data.z;

        double factor = (target_time - prev_time) / (current_time - prev_time);

        value_interp.x = prev_data.x + increment.x * factor;
        value_interp.y = prev_data.y + increment.y * factor;
        value_interp.z = prev_data.z + increment.z * factor;

        // zero interpolation
        value_interp = current_data;
    }
    else {
        value_interp = prev_data;
    }

    return value_interp;
}

Screenshot from 2023-10-06 22-57-43

Without IMU I get the image without any problems:

#include <signal.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <fstream>
#include <chrono>
#include <ctime>
#include <sstream>

#include <condition_variable>

#include <opencv2/opencv.hpp>

#include <librealsense2/rs.hpp>
#include "librealsense2/rsutil.h"

int main(int argc, char * argv[]) try
{
    // Declare depth colorizer for pretty visualization of depth data
//    rs2::colorizer color_map;

    // Declare RealSense pipeline, encapsulating the actual device and sensors
    rs2::pipeline pipe;
    // Start streaming with default recommended configuration

    rs2::config cfg;
    cfg.enable_stream(RS2_STREAM_INFRARED, 1, 848, 480, RS2_FORMAT_Y8, 30);
    cfg.enable_stream(RS2_STREAM_INFRARED, 2, 848, 480, RS2_FORMAT_Y8, 30);

    pipe.start(cfg);

    using namespace cv;
//    const auto window_name = "Display Image";
//    namedWindow(window_name, WINDOW_AUTOSIZE);

    while (waitKey(1) < 0 )
    {
        rs2::frameset data = pipe.wait_for_frames(); // Wait for next set of frames from the camera

        rs2::video_frame ir_frameL = data.get_infrared_frame(1);
        rs2::video_frame ir_frameR = data.get_infrared_frame(2);

        // Query frame size (width and height)
        const int width_img = ir_frameL.as<rs2::video_frame>().get_width();
        const int height_img = ir_frameL.as<rs2::video_frame>().get_height();

        Mat imCV = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(ir_frameL.get_data()), cv::Mat::AUTO_STEP);
        Mat imRightCV = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(ir_frameR.get_data()), cv::Mat::AUTO_STEP);

        // Update the window with new data
        cv::imshow("img_l", imCV);
        cv::imshow("img_r", imRightCV);

    }

    return EXIT_SUCCESS;
}
catch (const rs2::error & e)
{
    std::cerr << "RealSense error calling " << e.get_failed_function() << "(" << e.get_failed_args() << "):\n    " << e.what() << std::endl;
    return EXIT_FAILURE;
}
catch (const std::exception& e)
{
    std::cerr << e.what() << std::endl;
    return EXIT_FAILURE;
}

Screenshot from 2023-10-06 23-02-31

I can't figure out what I'm doing wrong? I didn't find an example for stereo + imu so I turned here.

Screenshot from 2023-10-07 12-18-57

Sometimes when starting up, this mini image from the camera appears)))

MartyG-RealSense commented 1 year ago

Hi @Userpc1010 The RealSense SDK has a C++ example program called rs-data-collect that streams depth, infrared and color and automatically additionally streams IMU data from camera models that are equipped with an IMU.

https://github.com/IntelRealSense/librealsense/tree/master/tools/data-collect

Another approach for streaming IMU data at the same time as other stream types such as infrared is to use a callback, as described in the C++ discussion at https://github.com/IntelRealSense/librealsense/issues/6426

Userpc1010 commented 1 year ago

I found out what the problem was, it was missing: cv::waitKey(1); very important additions I believe. Thank you for your time, it's can to close.

MartyG-RealSense commented 1 year ago

You are very welcome. I'm pleased to hear that you achieved a solution. As you suggested, I will close this case. Thanks again!