from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import openai_map_fn, template_map_fn_factory
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE
from xtuner.parallel.sequence import SequenceParallelSampler
save_steps = 500
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
Evaluate the generation performance during the training
evaluation_freq = 100
SYSTEM = ''
evaluation_inputs = [
('写一个Python函数,将十六进制颜色代码(如#0066ee)转换为对应的'
'红、绿、蓝(RGB)三个颜色分量值,并以元组的形式返回。'),
('Write a Python function that takes a hexadecimal color code '
'(e.g., #0066ee) as input and converts it into the corresponding '
'red, green, and blue (RGB) color component values.')
]
if use_varlen_attn:
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
configure default hooks
default_hooks = dict(
record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
configure environment
env_cfg = dict(
whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
set visualizer
visualizer = None
set log level
log_level = 'INFO'
load from which checkpoint
load_from = None
whether to resume training from the loaded checkpoint
resume = False
Defaults to use random seed and disable deterministic
配置文件如下:
Copyright (c) OpenMMLab. All rights reserved.
"""Data format:
[{ "messages": [ { "role": "system", "content": "xxx." }, { "role": "user", "content": "xxx." }, { "role": "assistant", "content": "xxx.", "loss": false}, { "role": "user", "content": "xxx." }, { "role": "assistant", "content": "xxx.", "loss": true} ] }, ... ] """ # noqa: E501 import torch from datasets import load_dataset from mmengine.dataset import DefaultSampler from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, LoggerHook, ParamSchedulerHook) from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR from peft import LoraConfig from torch.optim import AdamW from transformers import (AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig)
from xtuner.dataset import process_hf_dataset from xtuner.dataset.collate_fns import default_collate_fn from xtuner.dataset.map_fns import openai_map_fn, template_map_fn_factory from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook, VarlenAttnArgsToMessageHubHook) from xtuner.engine.runner import TrainLoop from xtuner.model import SupervisedFinetune from xtuner.utils import PROMPT_TEMPLATE from xtuner.parallel.sequence import SequenceParallelSampler
#######################################################################
PART 1 Settings
#######################################################################
Model
pretrained_model_name_or_path = 'deepseek-ai/DeepSeek-V2-Lite-Chat' use_varlen_attn = False
Data
data_files = [数据地址]
prompt_template = PROMPT_TEMPLATE.deepseek_coder max_length = 2048 pack_to_max_length = False
parallel
sequence_parallel_size = 1
Scheduler & Optimizer
batch_size = 1 # per_device accumulative_counts = 16 # bs = 1 GPU 1 batch_size_per_device 16 acc dataloader_num_workers = 0 max_epochs = 10 optim_type = AdamW lr = 2e-4 betas = (0.9, 0.999) weight_decay = 0 max_norm = 1 # grad clip warmup_ratio = 0.03
Save
save_steps = 500 save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
Evaluate the generation performance during the training
evaluation_freq = 100 SYSTEM = '' evaluation_inputs = [ ('写一个Python函数,将十六进制颜色代码(如#0066ee)转换为对应的' '红、绿、蓝(RGB)三个颜色分量值,并以元组的形式返回。'), ('Write a Python function that takes a hexadecimal color code ' '(e.g., #0066ee) as input and converts it into the corresponding ' 'red, green, and blue (RGB) color component values.') ]
#######################################################################
PART 2 Model & Tokenizer
####################################################################### tokenizer = dict( type=AutoTokenizer.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True, padding_side='right')
model = dict( type=SupervisedFinetune, use_varlen_attn=use_varlen_attn, llm=dict( type=AutoModelForCausalLM.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True, torch_dtype=torch.float16, quantization_config=dict( type=BitsAndBytesConfig, load_in_4bit=True, load_in_8bit=False, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4')), lora=dict( type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.1, bias='none', task_type='CAUSAL_LM'))
#######################################################################
PART 3 Dataset & Dataloader
####################################################################### train_dataset = dict( type=process_hf_dataset, dataset=dict(type=load_dataset, path='json', data_files=data_files), tokenizer=tokenizer, max_length=max_length, dataset_map_fn=openai_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), remove_unused_columns=True, shuffle_before_pack=True, pack_to_max_length=pack_to_max_length, use_varlen_attn=use_varlen_attn)
train_dataloader = dict( batch_size=batch_size, num_workers=dataloader_num_workers, dataset=train_dataset, sampler=dict(type=DefaultSampler, shuffle=True), collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
#######################################################################
PART 4 Scheduler & Optimizer
#######################################################################
optimizer
optim_wrapper = dict( type=AmpOptimWrapper, optimizer=dict( type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), accumulative_counts=accumulative_counts, loss_scale='dynamic', dtype='float16')
learning policy
More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [ dict( type=LinearLR, start_factor=1e-5, by_epoch=True, begin=0, end=warmup_ratio max_epochs, convert_to_iter_based=True), dict( type=CosineAnnealingLR, eta_min=0.0, by_epoch=True, begin=warmup_ratio max_epochs, end=max_epochs, convert_to_iter_based=True) ]
train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
#######################################################################
PART 5 Runtime
#######################################################################
Log the dialogue periodically during the training process, optional
custom_hooks = [ dict(type=DatasetInfoHook, tokenizer=tokenizer), dict( type=EvaluateChatHook, tokenizer=tokenizer, every_n_iters=evaluation_freq, evaluation_inputs=evaluation_inputs, system=SYSTEM, prompt_template=prompt_template) ]
if use_varlen_attn: custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
configure default hooks
default_hooks = dict(
record the time of every iteration.
)
configure environment
env_cfg = dict(
whether to enable cudnn benchmark
)
set visualizer
visualizer = None
set log level
log_level = 'INFO'
load from which checkpoint
load_from = None
whether to resume training from the loaded checkpoint
resume = False
Defaults to use random seed and disable
deterministic
randomness = dict(seed=None, deterministic=False)
set log processor
log_processor = dict(by_epoch=False)
启动脚本如下: export NCCL_IB_GID_INDEX=3 export MKL_THREADING_LAYER=GNU NPROC_PER_NODE=8 xtuner train ${CONFIG_PATH} --deepspeed deepspeed_zero3_offload --work-dir ${OUTPUTS} xtuner的版本是0.1.23 pack_to_max_length=True or False,都会卡死,请问是什么问题