InternLM / xtuner

An efficient, flexible and full-featured toolkit for fine-tuning LLM (InternLM2, Llama3, Phi3, Qwen, Mistral, ...)
https://xtuner.readthedocs.io/zh-cn/latest/
Apache License 2.0
4k stars 314 forks source link

docker利用xtuner微调时,出错,不知道哪的问题? #937

Open 159357hou opened 2 months ago

159357hou commented 2 months ago

(xtuner) root@d6d9f5d36abe:~/model/InternVL_2_2b_safetensors# xtuner train ./internvl_v2_internlm2_2b_qlora_finetune_copy.py The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers, 8-bit multiplication, and GPU quantization are unavailable. [2024-09-25 08:47:15,952] [WARNING] [real_accelerator.py:162:get_accelerator] Setting accelerator to CPU. If you have GPU or other accelerator, we were unable to detect it. [2024-09-25 08:47:15,957] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cpu (auto detect) 09/25 08:47:16 - mmengine - WARNING - WARNING: command error: 'libGL.so.1: cannot open shared object file: No such file or directory'! 09/25 08:47:16 - mmengine - WARNING - Arguments received: ['xtuner', 'train', './internvl_v2_internlm2_2b_qlora_finetune_copy.py']. xtuner commands use the following syntax:

    xtuner MODE MODE_ARGS ARGS

    Where   MODE (required) is one of ('list-cfg', 'copy-cfg', 'log-dataset', 'check-custom-dataset', 'train', 'test', 'chat', 'convert', 'preprocess', 'mmbench', 'eval_refcoco')
            MODE_ARG (optional) is the argument for specific mode
            ARGS (optional) are the arguments for specific command

Some usages for xtuner commands: (See more by using -h for specific command!)

    1. List all predefined configs:
        xtuner list-cfg
    2. Copy a predefined config to a given path:
        xtuner copy-cfg $CONFIG $SAVE_FILE
    3-1. Fine-tune LLMs by a single GPU:
        xtuner train $CONFIG
    3-2. Fine-tune LLMs by multiple GPUs:
        NPROC_PER_NODE=$NGPUS NNODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT ADDR=$ADDR xtuner dist_train $CONFIG $GPUS
    4-1. Convert the pth model to HuggingFace's model:
        xtuner convert pth_to_hf $CONFIG $PATH_TO_PTH_MODEL $SAVE_PATH_TO_HF_MODEL
    4-2. Merge the HuggingFace's adapter to the pretrained base model:
        xtuner convert merge $LLM $ADAPTER $SAVE_PATH
        xtuner convert merge $CLIP $ADAPTER $SAVE_PATH --is-clip
    4-3. Split HuggingFace's LLM to the smallest sharded one:
        xtuner convert split $LLM $SAVE_PATH
    5-1. Chat with LLMs with HuggingFace's model and adapter:
        xtuner chat $LLM --adapter $ADAPTER --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
    5-2. Chat with VLMs with HuggingFace's model and LLaVA:
        xtuner chat $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --image $IMAGE --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
    6-1. Preprocess arxiv dataset:
        xtuner preprocess arxiv $SRC_FILE $DST_FILE --start-date $START_DATE --categories $CATEGORIES
    6-2. Preprocess refcoco dataset:
        xtuner preprocess refcoco --ann-path $RefCOCO_ANN_PATH --image-path $COCO_IMAGE_PATH --save-path $SAVE_PATH        7-1. Log processed dataset:
        xtuner log-dataset $CONFIG
    7-2. Verify the correctness of the config file for the custom dataset:
        xtuner check-custom-dataset $CONFIG
    8. MMBench evaluation:
        xtuner mmbench $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $MMBENCH_DATA_PATH
    9. Refcoco evaluation:
        xtuner eval_refcoco $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $REFCOCO_DATA_PATH
    10. List all dataset formats which are supported in XTuner

Run special commands:

    xtuner help
    xtuner version

GitHub: https://github.com/InternLM/xtuner
tcxia commented 1 month ago

您好,定位到问题了? 我也有类似的情况,docker里面一直报错

159357hou commented 1 month ago

您好,定位到问题了? 我也有类似的情况,docker里面一直报错

你可以检查一下,你建立容器的时候使用时是否使用了GPU。我是因为没有调用gpu导致的