IrisRainbowNeko / genshin_auto_fish

基于深度强化学习的原神自动钓鱼AI
4.78k stars 718 forks source link

训练模型 TypeError: 'numpy.float64' object cannot be interpreted as an integer #316

Open Schrodingers-Neko opened 2 years ago

Schrodingers-Neko commented 2 years ago

2022-11-26 07:10:58 | INFO | yolox.evaluators.coco_evaluator:171 - Evaluate in main process... 2022-11-26 07:10:58 | INFO | yolox.evaluators.coco_evaluator:204 - Loading and preparing results... 2022-11-26 07:10:59 | INFO | yolox.evaluators.coco_evaluator:204 - DONE (t=0.06s) 2022-11-26 07:10:59 | INFO | pycocotools.coco:362 - creating index... 2022-11-26 07:10:59 | INFO | pycocotools.coco:362 - index created! 2022-11-26 07:10:59 | INFO | yolox.core.trainer:183 - Training of experiment is done and the best AP is 0.00 2022-11-26 07:10:59 | ERROR | yolox.core.launch:98 - An error has been caught in function 'launch', process 'MainProcess' (12568), thread 'MainThread' (17028): Traceback (most recent call last):

File "yolox_tools\train.py", line 125, in launch( └ <function launch at 0x0000022B998C29D0>

File "c:\users\username\genshin_auto_fish\yolox\core\launch.py", line 98, in launch main_func(*args) │ └ (╒══════════════════╤════════════════════════════════════════════════════════════════════════════════════════════════════════... └ <function main at 0x0000022B9B97C0D0>

File "yolox_tools\train.py", line 110, in main trainer.train() │ └ <function Trainer.train at 0x0000022B983CC940> └ <yolox.core.trainer.Trainer object at 0x0000022B9B9708B0>

File "c:\users\username\genshin_auto_fish\yolox\core\trainer.py", line 72, in train self.train_in_epoch() │ └ <function Trainer.train_in_epoch at 0x0000022B9B932280> └ <yolox.core.trainer.Trainer object at 0x0000022B9B9708B0>

File "c:\users\username\genshin_auto_fish\yolox\core\trainer.py", line 82, in train_in_epoch self.after_epoch() │ └ <function Trainer.after_epoch at 0x0000022B9B941E50> └ <yolox.core.trainer.Trainer object at 0x0000022B9B9708B0>

File "c:\users\username\genshin_auto_fish\yolox\core\trainer.py", line 207, in after_epoch self.evaluate_and_save_model() │ └ <function Trainer.evaluate_and_save_model at 0x0000022B9B945160> └ <yolox.core.trainer.Trainer object at 0x0000022B9B9708B0>

File "c:\users\username\genshin_auto_fish\yolox\core\trainer.py", line 302, in evaluate_and_save_model ap50_95, ap50, summary = self.exp.eval( │ │ └ <function Exp.eval at 0x0000022B9B97C8B0> │ └ ╒══════════════════╤═════════════════════════════════════════════════════════════════════════════════════════════════════════... └ <yolox.core.trainer.Trainer object at 0x0000022B9B9708B0>

File "c:\users\username\genshin_auto_fish\yolox\exp\yolox_base.py", line 288, in eval return evaluator.evaluate(model, is_distributed, half) │ │ │ │ └ False │ │ │ └ False │ │ └ YOLOX( │ │ (backbone): YOLOPAFPN( │ │ (backbone): CSPDarknet( │ │ (stem): Focus( │ │ (conv): BaseConv( │ │ (conv): ... │ └ <function COCOEvaluator.evaluate at 0x0000022B9B9328B0> └ <yolox.evaluators.coco_evaluator.COCOEvaluator object at 0x0000022BA34CC1C0>

File "c:\users\username\genshin_auto_fish\yolox\evaluators\coco_evaluator.py", line 131, in evaluate eval_results = self.evaluate_prediction(data_list, statistics) │ │ │ └ tensor([ 0.8768, 0.1399, 16.0000], device='cuda:0') │ │ └ [{'image_id': 0, 'category_id': 3, 'bbox': [412.74456787109375, 321.55999755859375, 289.51806640625, 108.240966796875], 'scor... │ └ <function COCOEvaluator.evaluate_prediction at 0x0000022B9B9329D0> └ <yolox.evaluators.coco_evaluator.COCOEvaluator object at 0x0000022BA34CC1C0>

File "c:\users\username\genshin_auto_fish\yolox\evaluators\coco_evaluator.py", line 212, in evaluate_prediction cocoEval = COCOeval(cocoGt, cocoDt, annType[1]) │ │ │ └ ['segm', 'bbox', 'keypoints'] │ │ └ <pycocotools.coco.COCO object at 0x0000022BA1DC33A0> │ └ <pycocotools.coco.COCO object at 0x0000022B9BD05C10> └ <class 'yolox.layers.fast_coco_eval_api.COCOeval_opt'>

File "C:\Users\username\anaconda3\envs\ysfish\lib\site-packages\pycocotools\cocoeval.py", line 76, in init self.params = Params(iouType=iouType) # parameters │ │ │ └ 'bbox' │ │ └ <class 'pycocotools.cocoeval.Params'> │ └ {} └ <yolox.layers.fast_coco_eval_api.COCOeval_opt object at 0x0000022B9BCAF460>

File "C:\Users\username\anaconda3\envs\ysfish\lib\site-packages\pycocotools\cocoeval.py", line 527, in init self.setDetParams() │ └ <function Params.setDetParams at 0x0000022BB5BC7430> └ <pycocotools.cocoeval.Params object at 0x0000022BA3A7CC40>

File "C:\Users\username\anaconda3\envs\ysfish\lib\site-packages\pycocotools\cocoeval.py", line 507, in setDetParams self.iouThrs = np.linspace(.5, 0.95, np.round((0.95 - .5) / .05) + 1, endpoint=True) │ │ │ │ └ <function round_ at 0x0000022BEFE8A310> │ │ │ └ <module 'numpy' from 'C:\Users\username\anaconda3\envs\ysfish\lib\site-packages\numpy\init.py'> │ │ └ <function linspace at 0x0000022BF0050790> │ └ <module 'numpy' from 'C:\Users\username\anaconda3\envs\ysfish\lib\site-packages\numpy\init.py'> └ <pycocotools.cocoeval.Params object at 0x0000022BA3A7CC40>

File "<__array_function__ internals>", line 180, in linspace

File "C:\Users\username\anaconda3\envs\ysfish\lib\site-packages\numpy\core\function_base.py", line 120, in linspace num = operator.index(num) │ │ └ 10.0 │ └ └ <module 'operator' from 'C:\Users\username\anaconda3\envs\ysfish\lib\operator.py'>

TypeError: 'numpy.float64' object cannot be interpreted as an integer

870676759 commented 1 year ago

请问这个问题解决了吗?

Schrodingers-Neko commented 1 year ago

没,摆烂了

judas1995 commented 1 year ago

我直接暴力修正 function_base.py,就過了 num = operator.index(int(num))