JGCRISummer2024 / TEMPESTData

Data to predict factors (sap flow) from TEMPEST
MIT License
0 stars 0 forks source link

Steps to progressively work towards a LSTM/ML analysis #2

Open bpbond opened 4 months ago

bpbond commented 4 months ago

TMP_C_20220601-20220630_L1_v1-0.csv ~TMP_C_20220701-20220731_L1_v1-0.csv~ ~TMP_C_20220801-20220831_L1_v1-0.csv~

GCW_W_20220601-20220630_L1_v1-0.csv ~GCW_W_20220701-20220731_L1_v1-0.csv~ ~GCW_W_20220801-20220831_L1_v1-0.csv~

Screenshot 2024-07-18 at 10 07 12 AM

bpbond commented 4 months ago

Once we have the daily data in wide form (as above, with one row per day in June 2022, and one column per variable)...

LET'S BUILD A SIMPLE MODEL

Linear regression model would be something like this:

mod <- lm(sap flow_2.5cm ~ wx_par_den15 + wx_tempavg15 + wx_windspeed15, data = data_daily_wide)
bpbond commented 4 months ago

P.S. a presentation I put together on linear regression is here - https://rpubs.com/bpbond/830637 - may be useful