JasonWayne / deep-learning-essay

0 stars 0 forks source link

NAS-BENCH-201: EXTENDING THE SCOPE OF REPRODUCIBLE NEURAL ARCHITECTURE SEARCH #23

Open JasonWayne opened 4 years ago

JasonWayne commented 4 years ago

https://www.semanticscholar.org/paper/NAS-Bench-201%3A-Extending-the-Scope-of-Reproducible-Dong-Yang/86d378df2221e16c339bb5a482f20e4ccda4cb5b#related-papers

https://arxiv.org/pdf/2001.00326.pdf

https://arxiv.org/abs/2001.00326

JasonWayne commented 4 years ago
  1. 提供了一个有xx个结构,用同一套超参,训练至收敛,包含推理速度等信息的BenchMark。
  2. 提供了多个NAS算法的实验结果对比。
  3. 和NAS-Bench-101的区别:本文提出的结构,搜索空间没有约束,支持更多种算法,给出了3个数据集,多种metric的评估结果,

https://www.semanticscholar.org/paper/NAS-Bench-201%3A-Extending-the-Scope-of-Reproducible-Dong-Yang/86d378df2221e16c339bb5a482f20e4ccda4cb5b/figure/2

JasonWayne commented 4 years ago

https://d3i71xaburhd42.cloudfront.net/86d378df2221e16c339bb5a482f20e4ccda4cb5b/8-Table5-1.png

文章的实验结果看出,Regularized Evoluation效果最优,REINFORCE次之。