after iteration: 51, perplexity: 5931.100267564532
delta beta: 5.883340980101
before updating:
Labeled-LDA Model:
K = 61
M = 60120
T = 130755
WN = 4029682
LN = 60120
alpha = 0.01
eta = 0.001
perplexity = 5931.100267564532
after updating:
Labeled-LDA Model:
K = 61
M = 60121
T = 130763
WN = 4029695
LN = 60123
alpha = 0.01
eta = 0.001
perplexity = 5931.23254749438
iteration 52 sampling...
Traceback (most recent call last):
File "/Users/rr/opt/anaconda3/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Users/rr/opt/anaconda3/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/rr/labeled_lda/mt_llda.py", line 48, in train_model
llda_model.training(1)
File "/Users/rr/labeled_lda/labeled_lda.py", line 440, in training
self._gibbs_sample_training()
File "/Users/rr/labeled_lda/labeled_lda.py", line 272, in _gibbs_sample_training
sample_z = LldaModel._multinomial_sample(p_vector)
File "/Users/rr/labeled_lda/labeled_lda.py", line 218, in _multinomial_sample
return np.random.multinomial(1, p_vector).argmax()
File "mtrand.pyx", line 3863, in numpy.random.mtrand.RandomState.multinomial
File "common.pyx", line 323, in numpy.random.common.check_array_constraint
ValueError: pvals < 0, pvals > 1 or pvals contains NaNs
where the line 47 and line 48
File "/Users/rr/labeled_lda/mt_llda.py", line 48, in train_model
llda_model.training(1)
creates the object of labeled lda and sends it to training:
where the line 47 and line 48
creates the object of labeled lda and sends it to training: