Open bh-cai opened 1 year ago
I encountered the same question! Did you solve it?
Hi!
Is it possible that your generated dataset is ScanNet200 and not ScanNet?
Best, Jonas
Your reply and help are greatly appreciated! However, I regenrated the scannet data by " python python -m datasets.preprocessing.scannet_preprocessing preprocess \ --data_dir="./data/raw/scannet/scannet" \ --save_dir="./data/processed/scannet" \ --git_repo="./data/raw/scannet/ScanNet" \ --scannet200=False" the result of data structure like flow: ScanNet200 βββ instance_gt / β βββ train / β β βββ scene0000_00.txt
β β βββ ... β β βββ scene0706_00.txt
β βββ validation /
β βββ scene0011_00.txt
β βββ ... β βββ scene0704_01.txt βββ train /
β βββ 0000_00.npy
β βββ ... β βββ 0706_00.npy βββ validation /
β βββ 0011_00.npy
β βββ ... β βββ 0704_01.npy βββ test /
β βββ 0707_00.npy
β βββ ... β βββ 0806_00.npy
βββ color_mean_std.yaml 137B βββ label_database.yaml 15KB βββ test_database.yaml 24KB βββ train_database.yaml 1.19M βββ validation_database.yaml 319KB βββ train_validation_database.yaml 1.50M
and regenerated the scannet200 data by
"python -m datasets.preprocessing.scannet_preprocessing preprocess \
--data_dir="./data/raw/scannet/scannet" \
--save_dir="./data/processed/scannet200" \
--git_repo="./data/raw/scannet/ScanNet" \
--scannet200=true"
the result of data structure like flow:
ScanNet200
βββ instance_gt /
β βββ train /
β β βββ scene0000_00.txt
β β βββ ...
β β βββ scene0706_00.txt
β βββ validation /
β βββ scene0011_00.txt
β βββ ...
β βββ scene0704_01.txt
βββ train /
β βββ 0000_00.npy
β βββ ...
β βββ 0706_00.npy
βββ validation /
β βββ 0011_00.npy
β βββ ...
β βββ 0704_01.npy
βββ test /
β βββ 0707_00.npy
β βββ ...
β βββ 0806_00.npy
βββ color_mean_std.yaml 137B
βββ label_database.yaml 15KB
βββ test_database.yaml 23KB
βββ train_database.yaml 1.17M
βββ validation_database.yaml 319KB
βββ train_validation_database.yaml 1.14M
I used the same raw dataset "--data_dir="./data/raw/scannet/scannet" ",and just make the different command like " --scannet200=False" or " --scannet200=true".
In the end, I got the same structure output data, and there just have the different on the size of data.
So, if I used a wrong command? I not very understand clearly.
Looking forward to your reply and help,best wish for you!
Hi!
Is it possible that your generated dataset is ScanNet200 and not ScanNet?
Best, Jonas
And when I run the train command as "python main_instance_segmentation.py" or "python main_instance_segmentation.py \ general.checkpoint='/home/mylabs/Mask3D/checkpoints/s3dis/from_scratch/area1.ckpt' general.train_mode=false" there was the same error.
I encountered the same question! Did you solve it?
not yet.
I have the similar problem and hope the author could help to explain it. Many thanks! @JonasSchult
Mask3D/main_instance_segmentation.py", line 79, in train runner = Trainer( File "/usr2/.local/lib/python3.10/site-packages/pytorch_lightning/utilities/argparse.py", line 345, in insert_env_defaults return fn(self, kwargs)
File "/usr2/.local/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 485, in init
self._callback_connector.on_trainer_init(
File "/usr2/.local/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py", line 89, in on_trainer_init
self.trainer.callbacks.extend(_configure_external_callbacks())
File "/usr2/.local/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py", line 265, in _configure_external_callbacks
factories = entry_points(group=group) # type: ignore[call-arg]
File "/opt/conda/envs/mask3d/lib/python3.10/importlib/metadata/init.py", line 1021, in entry_points return SelectableGroups.load(eps).select(params) File "/opt/conda/envs/mask3d/lib/python3.10/importlib/metadata/init.py", line 459, in load ordered = sorted(eps, key=by_group) File "/opt/conda/envs/mask3d/lib/python3.10/importlib/metadata/init.py", line 1018, in
During handling of the above exception, another exception occurred:
Mask3D/main_instance_segmentation.py", line 116, in
File "/opt/conda/envs/mask3d/lib/python3.10/site-packages/hydra/main.py", line 32, in decorated_main
_run_hydra(
File "/opt/conda/envs/mask3d/lib/python3.10/site-packages/hydra/_internal/utils.py", line 346, in _run_hydra
run_and_report(
File "/opt/conda/envs/mask3d/lib/python3.10/site-packages/hydra/_internal/utils.py", line 267, in run_and_report
print_exception(etype=None, value=ex, tb=final_tb) # type: ignore
TypeError: print_exception() got an unexpected keyword argument 'etype'
It seems that the issue results from https://github.com/JonasSchult/Mask3D/blob/3db966df2c021c3361bd6eed56121428b3e7a21d/datasets/semseg.py#L699-L720. The label_database.yaml is the same for both ScanNet and ScanNet200 after preprocessing.
Thank you for your reply, but I don't understand how to change the code to solve this problem. May I get some advice from you?
You just need to rerun scannet data preprocessing with --scannet200=False/True
instead of --scannet200=false/true
.
See my pull request: #111
Thank you very much, I have solved the issue. However, I have got another problem with the flowing:
"pytorch_lightning.utilities.exceptions.MisconfigurationException: ModelCheckpoint(monitor='val_mean_ap_50')
could not find the monitored key in the returned metrics: ['train_loss_ce', 'train_loss_mask', 'train_loss_dice', 'train_loss_ce_0', 'train_loss_mask_0', 'train_loss_dice_0', 'train_loss_ce_1', 'train_loss_mask_1', 'train_loss_dice_1', 'train_loss_ce_2', 'train_loss_mask_2', 'train_loss_dice_2', 'train_loss_ce_3', 'train_loss_mask_3', 'train_loss_dice_3', 'train_loss_ce_4', 'train_loss_mask_4', 'train_loss_dice_4', 'train_loss_ce_5', 'train_loss_mask_5', 'train_loss_dice_5', 'train_loss_ce_6', 'train_loss_mask_6', 'train_loss_dice_6', 'train_loss_ce_7', 'train_loss_mask_7', 'train_loss_dice_7', 'train_loss_ce_8', 'train_loss_mask_8', 'train_loss_dice_8', 'train_loss_ce_9', 'train_loss_mask_9', 'train_loss_dice_9', 'train_loss_ce_10', 'train_loss_mask_10', 'train_loss_dice_10', 'train_loss_ce_11', 'train_loss_mask_11', 'train_loss_dice_11', 'train_mean_loss_ce', 'train_mean_loss_mask', 'train_mean_loss_dice', 'epoch', 'step']. HINT: Did you call log('val_mean_ap_50', value)
in the LightningModule
?
"
Epoch 49: 100%|ββββ| 1513/1513 [1:56:39<00:00, 4.63s/it, loss=43.9, v_num=TION]
Traceback (most recent call last):
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 198, in run_and_report
return func()
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 347, in ModelCheckpoint(monitor='val_mean_ap_50')
could not find the monitored key in the returned metrics: ['train_loss_ce', 'train_loss_mask', 'train_loss_dice', 'train_loss_ce_0', 'train_loss_mask_0', 'train_loss_dice_0', 'train_loss_ce_1', 'train_loss_mask_1', 'train_loss_dice_1', 'train_loss_ce_2', 'train_loss_mask_2', 'train_loss_dice_2', 'train_loss_ce_3', 'train_loss_mask_3', 'train_loss_dice_3', 'train_loss_ce_4', 'train_loss_mask_4', 'train_loss_dice_4', 'train_loss_ce_5', 'train_loss_mask_5', 'train_loss_dice_5', 'train_loss_ce_6', 'train_loss_mask_6', 'train_loss_dice_6', 'train_loss_ce_7', 'train_loss_mask_7', 'train_loss_dice_7', 'train_loss_ce_8', 'train_loss_mask_8', 'train_loss_dice_8', 'train_loss_ce_9', 'train_loss_mask_9', 'train_loss_dice_9', 'train_loss_ce_10', 'train_loss_mask_10', 'train_loss_dice_10', 'train_loss_ce_11', 'train_loss_mask_11', 'train_loss_dice_11', 'train_mean_loss_ce', 'train_mean_loss_mask', 'train_mean_loss_dice', 'epoch', 'step']. HINT: Did you call log('val_mean_ap_50', value)
in the LightningModule
?
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/mylabs/Mask3D/main_instance_segmentation.py", line 114, in
I am not very clear about the problem above, may I get some help from you, if so, it would my best greatest.
I have the same problem. Did you ever find solution for this problem.
Hey, I just found that the function traceback.print_exception() has been changed in python v3.10, where the 'etype' parameter has been renamed to 'exc' and is now positional-only.
So I rewrite the file "/Users/.../python3.10/site-packages/hydra/_internal/utils.py", line 267 from
print_exception(etype=None, value=ex, tb=final_tb)
to
print_exception(None, value=ex, tb=final_tb)
And things go well. The package's change log can be found in website).
when I run the flow command, I got the issue: hydra.errors.HydraException: Error calling 'datasets.semseg.SemanticSegmentationDataset' : not available number labels, select from: 200, 200
main_instance_segmentation.py general.experiment_name=test1_scannet_val_query_150_topk_500_dbscan_0.95 general.project_name=scannet_eval general.checkpoint='checkpoints/scannet/scannet_val.ckpt' general.train_mode=false general.eval_on_segments=true general.train_on_segments=true model.num_queries=150 general.topk_per_image=500 general.use_dbscan=true general.dbscan_eps=0.95
/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/utilities/seed.py:55: UserWarning: No seed found, seed set to 2801433411 rank_zero_warn(f"No seed found, seed set to {seed}") Global seed set to 2801433411 EXPERIMENT ALREADY EXIST {'target': 'pytorch_lightning.loggers.WandbLogger', 'project': '${general.project_name}', 'name': '${general.experiment_name}', 'save_dir': '${general.save_dir}', 'entity': 'manjusaka_labs', 'resume': 'allow', 'id': '${general.experiment_name}'} wandb: Currently logged in as: bh_c (manjusaka_labs). Use
wandb login --relogin
to force relogin wandb: wandb version 0.15.4 is available! To upgrade, please run: wandb: $ pip install wandb --upgrade wandb: Tracking run with wandb version 0.15.0 wandb: Run data is saved locally in saved/test/test1_scannet_val_query_150_topk_500_dbscan_0.95/wandb/run-20230609_012749-test1_scannet_val_query_150_topk_500_dbscan_0.95 wandb: Runwandb offline
to turn off syncing. wandb: Resuming run test1_scannet_val_query_150_topk_500_dbscan_0.95 wandb: βοΈ View project at https://wandb.ai/manjusaka_labs/scannet_eval wandb: π View run at https://wandb.ai/manjusaka_labs/scannet_eval/runs/test1_scannet_val_query_150_topk_500_dbscan_0.95 2023-06-09 01:27:54.018 | WARNING | utils.utils:load_checkpoint_with_missing_or_exsessive_keys:91 - Key not found, it will be initialized randomly: model.scene_min 2023-06-09 01:27:54.019 | WARNING | utils.utils:load_checkpoint_with_missing_or_exsessive_keys:91 - Key not found, it will be initialized randomly: model.scene_max 2023-06-09 01:27:54.145 | WARNING | utils.utils:load_checkpoint_with_missing_or_exsessive_keys:100 - criterion.empty_weight not in loaded checkpoint 2023-06-09 01:27:54.149 | WARNING | utils.utils:load_checkpoint_with_missing_or_exsessive_keys:115 - excessive key: model.scene_min 2023-06-09 01:27:54.149 | WARNING | utils.utils:load_checkpoint_with_missing_or_exsessive_keys:115 - excessive key: model.scene_max [2023-06-09 01:27:54,238][main][INFO] - {'general_train_mode': False, 'general_task': 'instance_segmentation', 'general_seed': None, 'general_checkpoint': 'checkpoints/scannet/scannet_val.ckpt', 'general_backbone_checkpoint': None, 'general_freeze_backbone': False, 'general_linear_probing_backbone': False, 'general_train_on_segments': True, 'general_eval_on_segments': True, 'general_filter_out_instances': False, 'general_save_visualizations': False, 'general_visualization_point_size': 20, 'general_decoder_id': -1, 'general_export': False, 'general_use_dbscan': True, 'general_ignore_class_threshold': 100, 'general_project_name': 'scannet_eval', 'general_workspace': 'jonasschult', 'general_experiment_name': 'test1_scannet_val_query_150_topk_500_dbscan_0.95', 'general_num_targets': 19, 'general_add_instance': True, 'general_dbscan_eps': 0.95, 'general_dbscan_min_points': 1, 'general_export_threshold': 0.0001, 'general_reps_per_epoch': 1, 'general_on_crops': False, 'general_scores_threshold': 0.0, 'general_iou_threshold': 1.0, 'general_area': 5, 'general_eval_inner_core': -1, 'general_topk_per_image': 500, 'general_ignore_mask_idx': [], 'general_max_batch_size': 99999999, 'general_save_dir': 'saved/test/test1_scannet_val_query_150_topk_500_dbscan_0.95', 'general_gpus': 1, 'data_train_mode': 'train', 'data_validation_mode': 'validation', 'data_test_mode': 'validation', 'data_ignore_label': 255, 'data_add_raw_coordinates': True, 'data_add_colors': True, 'data_add_normals': False, 'data_in_channels': 3, 'data_num_labels': 20, 'data_add_instance': True, 'data_task': 'instance_segmentation', 'data_pin_memory': False, 'data_num_workers': 4, 'data_batch_size': 5, 'data_test_batch_size': 1, 'data_cache_data': False, 'data_voxel_size': 0.02, 'data_reps_per_epoch': 1, 'data_cropping': False, 'data_cropping_args_min_points': 30000, 'data_cropping_args_aspect': 0.8, 'data_cropping_args_min_crop': 0.5, 'data_cropping_args_max_crop': 1.0, 'data_crop_min_size': 20000, 'data_crop_length': 6.0, 'data_cropping_v1': True, 'data_train_dataloadertarget_': 'torch.utils.data.DataLoader', 'data_train_dataloader_shuffle': True, 'data_train_dataloader_pin_memory': False, 'data_train_dataloader_num_workers': 4, 'data_train_dataloader_batch_size': 5, 'data_validation_dataloadertarget_': 'torch.utils.data.DataLoader', 'data_validation_dataloader_shuffle': False, 'data_validation_dataloader_pin_memory': False, 'data_validation_dataloader_num_workers': 4, 'data_validation_dataloader_batch_size': 1, 'data_test_dataloadertarget_': 'torch.utils.data.DataLoader', 'data_test_dataloader_shuffle': False, 'data_test_dataloader_pin_memory': False, 'data_test_dataloader_num_workers': 4, 'data_test_dataloader_batch_size': 1, 'data_train_datasettarget_': 'datasets.semseg.SemanticSegmentationDataset', 'data_train_dataset_dataset_name': 'scannet', 'data_train_dataset_data_dir': 'data/processed/scannet', 'data_train_dataset_image_augmentations_path': 'conf/augmentation/albumentations_aug.yaml', 'data_train_dataset_volume_augmentations_path': 'conf/augmentation/volumentations_aug.yaml', 'data_train_dataset_label_db_filepath': 'data/processed/scannet/label_database.yaml', 'data_train_dataset_color_mean_std': 'data/processed/scannet/color_mean_std.yaml', 'data_train_dataset_data_percent': 1.0, 'data_train_dataset_mode': 'train', 'data_train_dataset_ignore_label': 255, 'data_train_dataset_num_labels': 20, 'data_train_dataset_add_raw_coordinates': True, 'data_train_dataset_add_colors': True, 'data_train_dataset_add_normals': False, 'data_train_dataset_add_instance': True, 'data_train_dataset_instance_oversampling': 0.0, 'data_train_dataset_place_around_existing': False, 'data_train_dataset_point_per_cut': 0, 'data_train_dataset_max_cut_region': 0, 'data_train_dataset_flip_in_center': False, 'data_train_dataset_noise_rate': 0, 'data_train_dataset_resample_points': 0, 'data_train_dataset_add_unlabeled_pc': False, 'data_train_dataset_cropping': False, 'data_train_dataset_cropping_args_min_points': 30000, 'data_train_dataset_cropping_args_aspect': 0.8, 'data_train_dataset_cropping_args_min_crop': 0.5, 'data_train_dataset_cropping_args_max_crop': 1.0, 'data_train_dataset_is_tta': False, 'data_train_dataset_crop_min_size': 20000, 'data_train_dataset_crop_length': 6.0, 'data_train_dataset_filter_out_classes': [0, 1], 'data_train_dataset_label_offset': 2, 'data_validation_datasettarget_': 'datasets.semseg.SemanticSegmentationDataset', 'data_validation_dataset_dataset_name': 'scannet', 'data_validation_dataset_data_dir': 'data/processed/scannet', 'data_validation_dataset_image_augmentations_path': None, 'data_validation_dataset_volume_augmentations_path': None, 'data_validation_dataset_label_db_filepath': 'data/processed/scannet/label_database.yaml', 'data_validation_dataset_color_mean_std': 'data/processed/scannet/color_mean_std.yaml', 'data_validation_dataset_data_percent': 1.0, 'data_validation_dataset_mode': 'validation', 'data_validation_dataset_ignore_label': 255, 'data_validation_dataset_num_labels': 20, 'data_validation_dataset_add_raw_coordinates': True, 'data_validation_dataset_add_colors': True, 'data_validation_dataset_add_normals': False, 'data_validation_dataset_add_instance': True, 'data_validation_dataset_cropping': False, 'data_validation_dataset_is_tta': False, 'data_validation_dataset_crop_min_size': 20000, 'data_validation_dataset_crop_length': 6.0, 'data_validation_dataset_filter_out_classes': [0, 1], 'data_validation_dataset_label_offset': 2, 'data_test_dataset_target': 'datasets.semseg.SemanticSegmentationDataset', 'data_test_dataset_dataset_name': 'scannet', 'data_test_dataset_data_dir': 'data/processed/scannet', 'data_test_dataset_image_augmentations_path': None, 'data_test_dataset_volume_augmentations_path': None, 'data_test_dataset_label_db_filepath': 'data/processed/scannet/label_database.yaml', 'data_test_dataset_color_mean_std': 'data/processed/scannet/color_mean_std.yaml', 'data_test_dataset_data_percent': 1.0, 'data_test_dataset_mode': 'validation', 'data_test_dataset_ignore_label': 255, 'data_test_dataset_num_labels': 20, 'data_test_dataset_add_raw_coordinates': True, 'data_test_dataset_add_colors': True, 'data_test_dataset_add_normals': False, 'data_test_dataset_add_instance': True, 'data_test_dataset_cropping': False, 'data_test_dataset_is_tta': False, 'data_test_dataset_crop_min_size': 20000, 'data_test_dataset_crop_length': 6.0, 'data_test_dataset_filter_out_classes': [0, 1], 'data_test_dataset_label_offset': 2, 'data_train_collationtarget_': 'datasets.utils.VoxelizeCollate', 'data_train_collation_ignore_label': 255, 'data_train_collation_voxel_size': 0.02, 'data_train_collation_mode': 'train', 'data_train_collation_small_crops': False, 'data_train_collation_very_small_crops': False, 'data_train_collation_batch_instance': False, 'data_train_collation_probing': False, 'data_train_collation_task': 'instance_segmentation', 'data_train_collation_ignore_class_threshold': 100, 'data_train_collation_filter_out_classes': [0, 1], 'data_train_collation_label_offset': 2, 'data_train_collation_num_queries': 150, 'data_validation_collationtarget_': 'datasets.utils.VoxelizeCollate', 'data_validation_collation_ignore_label': 255, 'data_validation_collation_voxel_size': 0.02, 'data_validation_collation_mode': 'validation', 'data_validation_collation_batch_instance': False, 'data_validation_collation_probing': False, 'data_validation_collation_task': 'instance_segmentation', 'data_validation_collation_ignore_class_threshold': 100, 'data_validation_collation_filter_out_classes': [0, 1], 'data_validation_collation_label_offset': 2, 'data_validation_collation_num_queries': 150, 'data_test_collation_target': 'datasets.utils.VoxelizeCollate', 'data_test_collation_ignore_label': 255, 'data_test_collation_voxel_size': 0.02, 'data_test_collation_mode': 'validation', 'data_test_collation_batch_instance': False, 'data_test_collation_probing': False, 'data_test_collation_task': 'instance_segmentation', 'data_test_collation_ignore_class_threshold': 100, 'data_test_collation_filter_out_classes': [0, 1], 'data_test_collation_label_offset': 2, 'data_test_collation_num_queries': 150, 'logging': [{'target': 'pytorch_lightning.loggers.WandbLogger', 'project': 'scannet_eval', 'name': 'test1_scannet_val_query_150_topk_500_dbscan_0.95', 'save_dir': 'saved/test/test1_scannet_val_query_150_topk_500_dbscan_0.95', 'entity': 'manjusaka_labs', 'resume': 'allow', 'id': 'test1_scannet_val_query_150_topk_500_dbscan_0.95'}], 'modeltarget_': 'models.Mask3D', 'model_hidden_dim': 128, 'model_dim_feedforward': 1024, 'model_num_queries': 150, 'model_num_heads': 8, 'model_num_decoders': 3, 'model_dropout': 0.0, 'model_pre_norm': False, 'model_use_level_embed': False, 'model_normalize_pos_enc': True, 'model_positional_encoding_type': 'fourier', 'model_gauss_scale': 1.0, 'model_hlevels': [0, 1, 2, 3], 'model_non_parametric_queries': True, 'model_random_query_both': False, 'model_random_normal': False, 'model_random_queries': False, 'model_use_np_features': False, 'model_sample_sizes': [200, 800, 3200, 12800, 51200], 'model_max_sample_size': False, 'model_shared_decoder': True, 'model_num_classes': 19, 'model_train_on_segments': True, 'model_scatter_type': 'mean', 'model_voxel_size': 0.02, 'model_config_backbonetarget_': 'models.Res16UNet34C', 'model_config_backbone_config_dialations': [1, 1, 1, 1], 'model_config_backbone_config_conv1_kernel_size': 5, 'model_config_backbone_config_bn_momentum': 0.02, 'model_config_backbone_in_channels': 3, 'model_config_backbone_out_channels': 20, 'model_config_backbone_out_fpn': True, 'metricstarget_': 'models.metrics.ConfusionMatrix', 'metrics_num_classes': 20, 'metrics_ignore_label': 255, 'optimizertarget_': 'torch.optim.AdamW', 'optimizer_lr': 0.0001, 'scheduler_scheduler_target': 'torch.optim.lr_scheduler.OneCycleLR', 'scheduler_scheduler_max_lr': 0.0001, 'scheduler_scheduler_epochs': 601, 'scheduler_scheduler_steps_per_epoch': -1, 'scheduler_pytorch_lightning_params_interval': 'step', 'trainer_deterministic': False, 'trainer_max_epochs': 601, 'trainer_min_epochs': 1, 'trainer_resume_from_checkpoint': 'saved/test/test1_scannet_val_query_150_topk_500_dbscan_0.95/last-epoch.ckpt', 'trainer_check_val_every_n_epoch': 50, 'trainer_num_sanity_val_steps': 2, 'callbacks': [{'target': 'pytorch_lightning.callbacks.ModelCheckpoint', 'monitor': 'val_mean_ap_50', 'save_last': True, 'save_top_k': 1, 'mode': 'max', 'dirpath': 'saved/test/test1_scannet_val_query_150_topk_500_dbscan_0.95', 'filename': '{epoch}-{val_mean_ap_50:.3f}', 'every_n_epochs': 1}, {'target': 'pytorch_lightning.callbacks.LearningRateMonitor'}], 'matchertarget_': 'models.matcher.HungarianMatcher', 'matcher_cost_class': 2.0, 'matcher_cost_mask': 5.0, 'matcher_cost_dice': 2.0, 'matcher_num_points': -1, 'loss_target': 'models.criterion.SetCriterion', 'loss_num_classes': 19, 'loss_eos_coef': 0.1, 'loss_losses': ['labels', 'masks'], 'loss_num_points': -1, 'loss_oversample_ratio': 3.0, 'loss_importance_sample_ratio': 0.75, 'loss_class_weights': -1} /root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:446: LightningDeprecationWarning: SettingTrainer(gpus=1)
is deprecated in v1.7 and will be removed in v2.0. Please useTrainer(accelerator='gpu', devices=1)
instead. rank_zero_deprecation( /root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/checkpoint_connector.py:52: LightningDeprecationWarning: SettingTrainer(resume_from_checkpoint=)
is deprecated in v1.5 and will be removed in v1.7. Please passTrainer.fit(ckpt_path=)
directly instead. rank_zero_deprecation( /root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py:57: LightningDeprecationWarning: SettingTrainer(weights_save_path=)
has been deprecated in v1.6 and will be removed in v1.8. Please passdirpath
directly to theModelCheckpoint
callback rank_zero_deprecation( GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs /home/mylabs/Mask3D/datasets/semseg.py:696: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details. file = yaml.load(f) Traceback (most recent call last): File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/utils.py", line 63, in call return _instantiate_class(type_or_callable, config, *args, *kwargs) File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 500, in _instantiate_class return clazz(args, **final_kwargs) File "/home/mylabs/Mask3D/datasets/semseg.py", line 218, in init self._labels = self._select_correct_labels(labels, num_labels) File "/home/mylabs/Mask3D/datasets/semseg.py", line 724, in _select_correct_labels raise ValueError(msg) ValueError: not available number labels, select from: 200, 200The above exception was the direct cause of the following exception:
Traceback (most recent call last): File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 198, in run_and_report return func() File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 347, in
lambda: hydra.run(
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/hydra.py", line 107, in run
return run_job(
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/core/utils.py", line 128, in run_job
ret.return_value = task_function(task_cfg)
File "/home/mylabs/Mask3D/main_instance_segmentation.py", line 110, in main
test(cfg)
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/main.py", line 27, in decorated_main
return task_function(cfg_passthrough)
File "/home/mylabs/Mask3D/main_instance_segmentation.py", line 100, in test
runner.test(model)
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 864, in test
return self._call_and_handle_interrupt(self._test_impl, model, dataloaders, ckpt_path, verbose, datamodule)
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 650, in _call_and_handle_interrupt
return trainer_fn(*args, *kwargs)
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 911, in _test_impl
results = self._run(model, ckpt_path=self.ckpt_path)
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1097, in _run
self._data_connector.prepare_data()
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py", line 120, in prepare_data
self.trainer._call_lightning_module_hook("prepare_data")
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1552, in _call_lightning_module_hook
output = fn(args, **kwargs)
File "/home/mylabs/Mask3D/trainer/trainer.py", line 1269, in prepare_data
self.train_dataset = hydra.utils.instantiate(
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/utils.py", line 70, in call
raise HydraException(f"Error calling '{cls}' : {e}") from e
hydra.errors.HydraException: Error calling 'datasets.semseg.SemanticSegmentationDataset' : not available number labels, select from:
200, 200
During handling of the above exception, another exception occurred:
Traceback (most recent call last): File "/home/mylabs/Mask3D/main_instance_segmentation.py", line 114, in
main()
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/main.py", line 32, in decorated_main
_run_hydra(
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 346, in _run_hydra
run_and_report(
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 267, in run_and_report
print_exception(etype=None, value=ex, tb=final_tb) # type: ignore
TypeError: print_exception() got an unexpected keyword argument 'etype'
Can you tell me how to solve the problem, thank you very much!