Closed nrontsis closed 8 months ago
Thanks for reporting! At the moment I'm a bit busy, so I can't address this very soon.
I should add more tests for the case where eigenvalues as very close!
Can (no longer) reproduce
Try more iterations. It currently fails about 1/500 times with spurious eigenvalues and terrible residuals.
On what?
Hah, I was not expecting to hear back on this one 😄
Just to note that this eigenproblem is (obviously?) ill-conditioned, and originated by an iterative method that required the solution of thousands of eigenproblems. Similar issues were opened in other eigensolvers (though they were not returning silently incorrect results like this package used to do).
I think this eigenproblem could be useful as an ill-conditioned test case - e.g. if a collection of ill-conditioned problems is used to test this package.
In trying to reproduce, perhaps you could try running from several many random initial starting vectors, as discussed here.
Increasing the iteration count in the script above to a few thousand reliably gets a few failures on my system with the current master branch. Note that ArnoldiMethod normally starts with a new random draw each time.
For me, calling Random.seed!(2779)
before partialschur
gives a bad run; you might need a different value.
I initially could not download the test case, but noticed now the link points to my fork. Updated the URL so it works again.
Very quick check:
Spectrum looks like this:
About 26 eigenvalues with real part < -1, a large cluster (about 650) eigenvalues at 0, and then this single eigenvalue with real path approx 0.15.
With regard to ArnoldiMethod's convergence, quite hand-wavy: it's like the power method where the speed of convergence is determined by the ratio of the second and most dominant eigenvalue: abs(λ₂) / abs(λ₁), but slightly better cause the Krylov subspace is shift invariant, so you can pick any shift τ and look at abs(λ₂ - τ) / abs(λ₁ - τ), and on top of that because we're keeping track of a full subspace instead of a single vector, you can look at ratios between the center of clusters of eigenvalues, provided the cluster size <= maxdim
. The cluster at 0 is larger than maxdim
so slow to converge, the method would have a much easier time finding the eigenvalues with smallest real part.
Once the smallest real eigenvalues have converged, the largest real eigenvalue becomes relatively dominant. That's all to say: the target eigenvalue may start to converge only relatively late.
However, the stopping criterion of the Arnoldi method is a bit questionable in cases: it stops once nev
eigenvalues closest to the target in its search subspace have converged. If however the actually closest eigenvalue to the target is not in the search subspace yet because it starts to converge relatively late, the method may return too early. The assumption is basically that the eigenvalues the user is interested in are sufficiently dominant and separated to immediately show up in the search subspace.
One way to work around this is to bump up nev
, then I only get 1 failure in 100'000. (Presumably increasing maxdim
could also help -- I think KrylovKit uses 30 vecs, ArnoldiMethod only 20):
@testset "ArnoldiMethod.jl" begin
tgt = maximum(real(eigvals(W)))
@show tgt
for i = 1:100_000
decomp, history = partialschur(W, nev=5, which=LR(), tol=1e-13);
@test history.nconverged >= 1
if abs(maximum(real(decomp.eigenvalues)) - tgt) > 1e-6
@show decomp.eigenvalues
@test false
end
end
end
So, I'm inclined to say this is not a bug, just a caveat of the method.
I will have a look into why sometimes the number of iterations needed for ArnoldiMethod.jl is rather excessive while the median number is OK.
And also why just bumping maxdim=30
seems to make the dense eigensolver fail to converge sometimes... that's certainly new.
Further partialschur(W, nev=1, tol=1e-13, which=:LR)
never fails in 100K runs; so the cluster at 0 is really the issue, which is to be expected.
Further I think ArnoldiMethod is not hitting "exactly singular" issues thanks to e.g. #135.
Regarding partialschur(W, maxdim=30, nev=5, tol=1e-12)
, the problematic Hessenberg matrix of which the eigenvalues need to be computed looks like this:
[0.05791270343988066 1.5089167428008903 -0.6969823948072562 -0.3171043693823104 -0.1056790349638593 -0.0270028525164318 -0.03592926007475403 -0.09145477821544445 0.02749365368168674 -0.08055535081070868 -0.027466435871367982 -0.080033452422037 0.052276086051236244 0.0009315507214651274 0.026288735611728772 -0.01808489535531256 0.01499524433830044 0.004664674110328446 -0.011796333991592788 -0.04549617445772696 0.0059224301960711465 0.016692211510987338 -0.005062351467374356 -0.0037093796684796697 -0.007184930745284205 -0.01891448566953889 -0.004160333445196241 -0.0045378638039314 0.022458695944268338 -0.010727629218368978; 1.7933519409793208 -7.907371529004059 2.6878312056855527 0.3871551880601951 0.09127502544537036 -0.15761386430249014 -0.07870824682801375 0.2045258332944687 -0.34495936543234595 0.2829543971624766 -0.10515065185298803 0.2788652659401409 -0.2596769277825952 0.1006166487808873 -0.07017760040257308 0.018602532274564848 -0.08440842184620848 -0.028959037610192927 0.05703216432792135 0.2142778890536297 0.00984548709193813 0.00489971278129498 0.025851941503145712 0.01438975465924415 0.02802446891664933 0.07527897784180171 -0.002647074312117464 -0.0028897021336410918 -0.11578022694138082 0.0497763036978028; 0.0 2.974916638527389 -2.3857119095833346 2.7283049203702907 0.04810604024614914 -0.0677488469611963 0.08396616457398057 -0.1140233823468953 0.18344790531704325 -0.17207347660577088 0.16700601811727375 0.008817874353493446 0.05672042959015135 -0.05381071408153465 -0.07530149693314647 0.014497666106336113 0.0343861138402868 0.02527922547239361 -0.00879442767954778 -0.007289704547807615 0.02296972400521998 0.00447927196015066 -0.007486064656018023 0.00818338728164272 0.020300685555312302 0.04358247857994663 -0.004871294212621282 -0.00536094868622352 0.03563045647634484 0.005675899857340394; 0.0 0.0 2.9437918864274226 -10.038911313530177 1.7869500810822432 0.3066026486057063 -0.31043320131792546 0.16324910006353122 -0.1954330296626003 0.24605269523120898 -0.07765022757597634 -0.11650237603293917 0.1414251351561431 -0.06752321102391595 0.11129921135178443 -0.026810629271970025 0.004342081699149514 -0.038289070558279806 -0.03281555636464557 -0.2047886535253535 0.007401986969571927 0.0011324604052667928 -0.008708945829576771 -0.029394270919283344 -0.0867972709728772 -0.18763204571410314 -0.001511149626529857 -0.0016672462433964747 0.04018241457375961 -0.08489577474303717; 0.0 0.0 0.0 2.221301810079435 -8.998046155257857 3.22235516340822 0.28551268127852464 -0.3662104166894975 0.1590354127788442 0.10910756135891857 -0.2036777810381381 -0.28333742524585187 0.1515019288456211 -0.03453238665812315 0.35548611835041294 -0.08989717499120935 -0.04501488175675925 -0.03399255020430894 -0.03291874413669105 -0.1516123455401014 0.002632588056575653 0.0001876503905701778 0.004329644373919098 -0.05728997836769961 -0.05765467156186154 -0.1873601107590985 -0.0004977357178851231 -0.0005424844313214585 -0.04869767875924026 0.012558726304959631; 0.0 0.0 0.0 0.0 3.5979632314280208 -6.663239399247186 2.777389381538671 -0.0636037311009417 -0.0334839225129111 0.10440402466207857 -0.352416634676149 -0.22251559155842443 -0.1272203146148792 0.16054381737981055 0.38632154090041854 -0.11800311340098377 -0.008426632121162438 0.022016101094704203 0.0102144881210854 0.09542197234090401 0.0020641830886548498 -3.367003172277265e-5 0.0029996219192264337 0.008547242307109695 0.04664380309460358 0.08792632333673808 -0.00035649368928861776 -0.0003908830985869161 -0.019320062907593187 0.054042842554511576; 0.0 0.0 0.0 0.0 0.0 3.275953431763694 -7.848631122731064 3.3439790595894716 0.024649556090671917 -0.3422509736067912 -0.194093101807592 -0.07091069478981066 -0.3044322052760918 0.28436993981974334 -0.05136198819360503 -0.02462016483673448 0.0404226379881155 0.011680198723546337 0.039977457693763194 0.1176671167156832 0.0014436092064404533 -0.00014450972339383775 -0.006577640284641484 0.06664048857375723 0.02490817721312305 0.15220580479805895 -0.0002261143609133525 -0.00025844110059322113 0.07455282566032435 -0.07343406609078004; 0.0 0.0 0.0 0.0 0.0 0.0 3.724218238048316 -5.264657439517733 2.2089606869944496 -0.25463133032530294 -0.2339308542015861 -0.2273446712542719 0.05331868839511896 0.12820972402602293 -0.2578079596460878 0.02264865111020224 -0.014711758866401211 -0.01947285344417686 -0.019019731221480894 -0.10622998316863566 0.0013319449170718623 -0.00022266199839778532 0.002243117233341788 -0.029536403273968295 -0.04025506338705781 -0.11310866604028456 -0.0001924533488199872 -0.0002102408620800316 -0.022459417923219826 -0.007429220466391549; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.770145785150411 -6.708551168672895 2.8392908229040006 -0.357365162764837 -0.12733140027737772 0.3170646747334376 -0.12432438814526553 0.09276761669671267 -0.03509886602952713 -0.021956630106516335 0.021309829249439215 -0.040290744409005076 -0.023947944028854935 0.0007063079916141048 -0.0001630081620386378 0.0037689593559375907 -0.05634269174251361 0.026448961887018143 -0.055220684997319046 -9.383813784756903e-5 -9.616175705694772e-5 -0.06690422052252622 0.12336710712415062; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2330804333415566 -7.08179000070135 1.539909872113376 0.2799539464837651 -0.19457375867263538 0.08472922108076425 0.06109008608610269 -0.05378590934812107 0.029970160626213743 -0.018749468961908336 0.056153072481522355 0.11139638940006852 0.0003552834282125848 -0.00011709429536668596 -0.006874555415212862 0.08249834098943343 -0.010790109540410884 0.12438623317813434 -4.005600215118213e-5 -5.584527898975513e-5 0.09707133655284722 -0.145568071978358; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.045770632125816 -4.007660248716421 1.3837102790441371 -0.022358709375845637 0.15233093330501518 -0.2795784502825249 -0.07761599679279783 -0.019975235748125084 0.020171791569975922 -0.005606816106820043 -0.05766646478484208 0.00012083251680050297 -0.0001420869682485326 0.0070966214355969795 -0.014184891141260113 0.01748051542529177 0.003284825804913802 4.838674053311495e-6 1.0507173679301572e-5 -0.04800382234990216 0.05529695548144365; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7760074596958602 -5.788010767069059 2.805185356588569 0.01126887223483597 0.3832092299365627 -0.37513493828273387 -0.014599105233391373 -0.048332600811108586 -0.05754049861623606 0.04033225853019902 -0.00016488584739220245 -0.0001748903327620185 -0.01645357989877612 -0.04793373822633345 -0.06008085846432854 -0.17689973680673846 6.285101109537294e-5 6.229650944269442e-5 0.05501255538390161 -0.03636966783527142; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.957596719829789 -5.407125358415526 2.9448356527476816 0.2625869567899582 -0.5992936605314703 -0.06492856389671932 0.0463149773376485 0.0655194662823086 -0.023754758601775977 -0.0004239568099857801 -0.00029856656925449413 0.01694915767280278 0.06096291928282961 0.06587878018737615 0.20836334462445583 0.00012904152323281372 0.00014709375508973528 -0.04890623499179663 0.025854158997431403; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.051300201538155 -1.9278250517430482 -0.06196991974734687 -0.6478664901770008 -0.038301795584448906 -0.023725083953109457 -0.02490480683131525 0.004245035146342803 -0.0006345141174892673 -0.00038038037067375416 -0.006863463080716819 -0.02625896289231182 -0.027323233891041118 -0.08808861932693224 0.00018305815568247716 0.00019843953609946442 0.018776654443368325 -0.009029245787181011; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4743591467837972 -4.480788403515731 0.796412167226133 -0.0037890059256047715 -0.007458041795458059 0.011981008101435302 -0.00555649056403998 -0.0001408744908267365 -6.899149934982523e-6 0.0006570725131172846 0.003421907891268037 0.002861920374544506 0.01038721007159706 2.59847458291447e-5 2.8765438908863938e-5 -0.001172365567510069 -0.00014737146731408444; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8748898652235407 -0.5207377164132949 0.724075518811872 0.05038876562857095 -0.04276426911442398 0.02269799950898405 -0.000378275880468825 0.0001420186810495324 0.00023322896143625552 -0.004106046170421364 -0.00023124293363690942 -0.007424034628020593 3.987715007950179e-5 4.488463901068108e-5 -0.004130675300134573 0.006087920692100608; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7252515265329652 -10.354952886093773 -0.21411155402332033 0.6210905753317623 -0.2784512594660191 -2.6853387485475125e-5 1.2033757330055274e-5 -0.005206821782122694 0.046227660579228294 -0.006146379583910083 0.0696011486749071 2.8184709541008305e-6 -3.9353288639422585e-6 0.06067186299075732 -0.08403965665270216; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4876987323498727 -9.115949014755229 0.20516572921195814 -0.5094080881678525 -1.337743471795539e-6 -7.31860273130722e-6 0.02083347222572451 0.08009245968532182 0.08615074059416504 0.2771933683934974 7.811291017842132e-8 6.840784743665729e-6 -0.05763464609031092 0.02531219866527759; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.491887779746838 -9.230777963735944 -0.4962509875353187 -5.35492183052419e-8 -1.01391883189761e-6 0.0014037496531440208 0.09421242510641283 0.09674129144933759 0.3137294682549301 3.1578850578703054e-8 -4.647807024454335e-6 0.04017045300102949 -0.007560686622823428; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1008587503269951 -9.244350444283215 6.620002914597967e-8 -2.4643419020451367e-6 0.006208480064929932 0.04261741357551742 0.039114259579314956 0.13283879083401903 -1.2101753162508527e-8 7.326451379940441e-7 -0.00632177629888857 0.002238110029357466; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.801760108519137e-8 0.19967056072632966 -0.26591365306915704 -0.00014846014397978165 -5.443867297593276e-6 3.335929038455671e-6 -7.906777714355627e-8 0.036505692115822705 0.006924245037570334 2.57106096230959e-6 3.3967113515333616e-8; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.14992960911195477 -0.1996718473858975 0.003596336704954895 0.00021923886493620823 -0.00024042885441973727 5.494992915284897e-6 0.034006814963714285 0.0026671827057688784 -0.00012651654285523222 -2.8298825196845513e-6; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0036017138606995788 -10.271147548376504 -0.47249618517903547 0.6741982657112929 -0.015086549355991472 1.2305589652330325e-5 -4.0465517649062896e-5 0.3568249977061375 0.0094488115876474; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.14145342433873137 -9.30841505432732 0.30665207501863184 -0.017962775799553916 6.219068191763016e-8 1.46388375470453e-5 -0.1258859529805637 -0.10050884141374516; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.38282531044625157 -9.433426668199937 -0.0025972386177150935 9.803485199588041e-8 -1.0812390410638018e-5 0.09312243655841991 0.05588501564408238; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01589708787421915 -8.98700944243664 4.2162653075307477e-7 1.1510257967048204e-7 -0.001083683964504522 0.02142734600939302; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2259185608062783e-7 0.03215520934153351 -0.012345494246141975 -1.1143142487629819e-5 -2.784451086784847e-7; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.08375180235430589 -0.0321553443800285 0.0011642770828508924 3.0520645996608026e-5; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0011644364978552278 -10.072456032304526 -0.24144220035563782; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.021740744304687802 -9.925807632065508]
The QR-algorithm needs 27608 iterations for this 30x30 matrix... Pretty crazy? GenericLinearAlgebra.jl seems to do better. Will have a look.
Reduced the problem to a 4x4 matrix
H = [-9.000000046596169 9.363971416904122e-6 0.6216202324428521 0.783119615978767; -3.1249216068055166e-10 -9.000000125049475 -0.005030734831215954 0.026538692060151765; 0.0 2.5838932886290116e-12 -8.999999884550379 -4.118678562647915e-7; 0.0 0.0 5.499735555858365e-9 -8.99999994380397]
for which local_schurfact!
needs 27489 iterations. That sounds like something that should be trivial to debug...
Ugh, after #136 I'm getting 12 out of 10000 failures with
partialschur(W, nev=3, which=:LR, maxdim=20, tol=1e-13)
and no failures with
partialschur(W, nev=5, which=:LR, maxdim=20, tol=1e-13)
partialschur(W, nev=5, which=:LR, maxdim=30, tol=1e-13)
The particular matrix hits pretty much all edge cases one can think of.
ArnoldiMethod.jl seems to behave much better than ARPACK though.
Inclined to close this now that #135 and #136 are merged.
(But will leave it open until I've checked what's up in those 12 out of 10'000 cases)
Actually #139 and #140 together reduce the failure rate to 0 out of 100K also for
partialschur(W, nev=3, which=:LR, maxdim=20, tol=1e-13)
previously it failed 12 out of 10K.
The spurious eigenvalues can be explained by instability of the Krylov-Schur restart in case of converged eigenpairs, so with the tiniest residuals. Those residuals are used to build a reflector, and the quality of that reflector is really poor then.
Solution is (a) to use Given's rotations instead of a Householder reflector on that vec that has entries of vastly different orders of magnitude, and (b) to purge converged, but non-desired eigenvalues.
For (b) I have to do more testing, cause maybe it slows down convergence because those vectors are no longer deflated and may re-appear due to rounding errors.
I noticed that sometimes the results obtained via
ArnoldiMethod.jl
are incorrect. I attach a minimal example below:Download myerror.jld2 and run:
on
Julia
version:1.0.1
ArnoldiMethod.jl
version:0.0.4
.