JuliaPhysics / SolidStateDetectors.jl

Solid state detector field and charge drift simulation in Julia
Other
77 stars 29 forks source link

Completed Geant4 materials list #392

Closed bene73 closed 1 month ago

bene73 commented 1 month ago

Defined the physical properties for PEN, PTFE and CdZnTe. Now, all elements that are available in SolidStateDetectors.jl can also be used to perform Geant4 simulations.

The fraction field in each of the compound materials denotes the relative mass of the element in terms of the total mass of each molecule. The fractions for each material are calculated in the following way:

oschulz commented 1 month ago

For the COBRA CdZnTe experiment we used

<element name="Cd_standard" formula="Cd" Z="48" >
    <fraction ref="Cd106" n="0.0125" />
    <fraction ref="Cd108" n="0.0089" />
    <fraction ref="Cd110" n="0.1251" />
    <fraction ref="Cd111" n="0.1281" />
    <fraction ref="Cd112" n="0.2413" />
    <fraction ref="Cd113" n="0.1222" />
    <fraction ref="Cd114" n="0.2872" />
    <fraction ref="Cd116" n="0.0747" />
</element>

<element name="Zn_standard" formula="Zn" Z="30">
    <fraction ref="Zn64" n="0.486"/>
    <fraction ref="Zn66" n="0.279"/>
    <fraction ref="Zn67" n="0.041"/>
    <fraction ref="Zn68" n="0.188"/>
    <fraction ref="Zn70" n="0.006"/>
</element>

<element name="Te_standard" formula="Te" Z="52" >
    <fraction ref="Te122" n="0.0257"/>
    <fraction ref="Te123" n="0.0089"/>
    <fraction ref="Te124" n="0.0476"/>
    <fraction ref="Te125" n="0.071"/>
    <fraction ref="Te126" n="0.1889"/>
    <fraction ref="Te128" n="0.3173"/>
    <fraction ref="Te130" n="0.3397"/>
</element>

<material name="CdZnTe" state="solid">
    <D value="5.78" unit="g/cm3"/>
    <fraction n="0.5" ref="Te_standard" />
    <fraction n="0.05" ref="Zn_standard" />
    <fraction n="0.45" ref="Cd_standard" />
</material>
fhagemann commented 1 month ago

For the COBRA CdZnTe experiment we used

<element name="Cd_standard" formula="Cd" Z="48" >
  <fraction ref="Cd106" n="0.0125" />
  <fraction ref="Cd108" n="0.0089" />
  <fraction ref="Cd110" n="0.1251" />
  <fraction ref="Cd111" n="0.1281" />
  <fraction ref="Cd112" n="0.2413" />
  <fraction ref="Cd113" n="0.1222" />
  <fraction ref="Cd114" n="0.2872" />
  <fraction ref="Cd116" n="0.0747" />
</element>

<element name="Zn_standard" formula="Zn" Z="30">
  <fraction ref="Zn64" n="0.486"/>
  <fraction ref="Zn66" n="0.279"/>
  <fraction ref="Zn67" n="0.041"/>
  <fraction ref="Zn68" n="0.188"/>
  <fraction ref="Zn70" n="0.006"/>
</element>

<element name="Te_standard" formula="Te" Z="52" >
  <fraction ref="Te122" n="0.0257"/>
  <fraction ref="Te123" n="0.0089"/>
  <fraction ref="Te124" n="0.0476"/>
  <fraction ref="Te125" n="0.071"/>
  <fraction ref="Te126" n="0.1889"/>
  <fraction ref="Te128" n="0.3173"/>
  <fraction ref="Te130" n="0.3397"/>
</element>

<material name="CdZnTe" state="solid">
  <D value="5.78" unit="g/cm3"/>
  <fraction n="0.5" ref="Te_standard" />
  <fraction n="0.05" ref="Zn_standard" />
  <fraction n="0.45" ref="Cd_standard" />
</material>

But is the fraction the atomic fraction or the mass fraction? Because 0.5,0.05,0.45 looks like atomic fractions to me