Closed joelreymont closed 9 months ago
OpenSpiel tests pass and RL Env builds fine but
A.L.E: Arcade Learning Environment (version 0.6.0) [Powered by Stella] Use -help for help screen. Warning: couldn't load settings file: ./ale.cfg [ Info: testing OpenSpiel: tic_tac_toe random policy with OpenSpielEnv: Error During Test at /Users/joelr/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/base.jl:201 Got exception outside of a @test MethodError: no method matching information_state_string(::CxxWrap.StdLib.UniquePtrAllocated{State}, ::Int32) Closest candidates are: information_state_string(::CxxWrap.StdLib.UniquePtrAllocated{State}) @ OpenSpiel ~/.julia/packages/OpenSpiel/kjP7Z/src/patch.jl:89 information_state_string(::Union{State, CxxWrap.CxxWrapCore.CxxRef{<:State}}, ::Integer) @ OpenSpiel ~/.julia/packages/CxxWrap/5IZvn/src/CxxWrap.jl:624 Stacktrace: [1] _state(env::OpenSpielEnv{CxxWrap.StdLib.UniquePtrAllocated{State}, CxxWrap.StdLib.SharedPtrAllocated{Game}}, ::InformationSet{String}, player::Int32) @ ReinforcementLearningEnvironments ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/src/environments/3rd_party/open_spiel.jl:139 [2] state(env::OpenSpielEnv{CxxWrap.StdLib.UniquePtrAllocated{State}, CxxWrap.StdLib.SharedPtrAllocated{Game}}, ss::InformationSet{String}, player::Int32) @ ReinforcementLearningEnvironments ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/src/environments/3rd_party/open_spiel.jl:135 [3] state @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/interface.jl:490 [inlined] [4] state @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/interface.jl:489 [inlined] [5] macro expansion @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/base.jl:214 [inlined] [6] macro expansion @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [7] test_runnable!(env::OpenSpielEnv{CxxWrap.StdLib.UniquePtrAllocated{State}, CxxWrap.StdLib.SharedPtrAllocated{Game}}, n::Int64; rng::TaskLocalRNG) @ ReinforcementLearningBase ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/base.jl:202 [8] test_runnable! (repeats 2 times) @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/base.jl:200 [inlined] [9] macro expansion @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/environments/3rd_party/open_spiel.jl:9 [inlined] [10] macro expansion @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [11] top-level scope @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/environments/3rd_party/open_spiel.jl:2 [12] include @ ./client.jl:489 [inlined] [13] macro expansion @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/environments/3rd_party/3rd_party.jl:5 [inlined] [14] macro expansion @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [15] top-level scope @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/environments/3rd_party/3rd_party.jl:3 [16] include(fname::String) @ Base.MainInclude ./client.jl:489 [17] top-level scope @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/environments/environments.jl:2 [18] include(fname::String) @ Base.MainInclude ./client.jl:489 [19] macro expansion @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/runtests.jl:20 [inlined] [20] macro expansion @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [21] top-level scope @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/runtests.jl:20 [22] include(fname::String) @ Base.MainInclude ./client.jl:489 [23] top-level scope @ none:6 [24] eval @ ./boot.jl:385 [inlined] [25] exec_options(opts::Base.JLOptions) @ Base ./client.jl:291 [26] _start() @ Base ./client.jl:552 [ Info: testing OpenSpiel: kuhn_poker ┌ Warning: unexpected player -1, falling back to default state value. └ @ ReinforcementLearningEnvironments ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/src/environments/3rd_party/open_spiel.jl:127 random policy with OpenSpielEnv: Error During Test at /Users/joelr/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/base.jl:201 Got exception outside of a @test MethodError: no method matching information_state_string(::CxxWrap.StdLib.UniquePtrAllocated{State}, ::Int32) Closest candidates are: information_state_string(::CxxWrap.StdLib.UniquePtrAllocated{State}) @ OpenSpiel ~/.julia/packages/OpenSpiel/kjP7Z/src/patch.jl:89 information_state_string(::Union{State, CxxWrap.CxxWrapCore.CxxRef{<:State}}, ::Integer) @ OpenSpiel ~/.julia/packages/CxxWrap/5IZvn/src/CxxWrap.jl:624 Stacktrace: [1] _state(env::OpenSpielEnv{CxxWrap.StdLib.UniquePtrAllocated{State}, CxxWrap.StdLib.SharedPtrAllocated{Game}}, ::InformationSet{String}, player::Int32) @ ReinforcementLearningEnvironments ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/src/environments/3rd_party/open_spiel.jl:139 [2] state(env::OpenSpielEnv{CxxWrap.StdLib.UniquePtrAllocated{State}, CxxWrap.StdLib.SharedPtrAllocated{Game}}, ss::InformationSet{String}, player::Int32) @ ReinforcementLearningEnvironments ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/src/environments/3rd_party/open_spiel.jl:135 [3] state @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/interface.jl:490 [inlined] [4] state @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/interface.jl:489 [inlined] [5] macro expansion @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/base.jl:214 [inlined] [6] macro expansion @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [7] test_runnable!(env::OpenSpielEnv{CxxWrap.StdLib.UniquePtrAllocated{State}, CxxWrap.StdLib.SharedPtrAllocated{Game}}, n::Int64; rng::TaskLocalRNG) @ ReinforcementLearningBase ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/base.jl:202 [8] test_runnable! (repeats 2 times) @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningBase/src/base.jl:200 [inlined] [9] macro expansion @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/environments/3rd_party/open_spiel.jl:9 [inlined] [10] macro expansion @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [11] top-level scope @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/environments/3rd_party/open_spiel.jl:2 [12] include @ ./client.jl:489 [inlined] [13] macro expansion @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/environments/3rd_party/3rd_party.jl:5 [inlined] [14] macro expansion @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [15] top-level scope @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/environments/3rd_party/3rd_party.jl:3 [16] include(fname::String) @ Base.MainInclude ./client.jl:489 [17] top-level scope @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/environments/environments.jl:2 [18] include(fname::String) @ Base.MainInclude ./client.jl:489 [19] macro expansion @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/runtests.jl:20 [inlined] [20] macro expansion @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [21] top-level scope @ ~/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/runtests.jl:20 [22] include(fname::String) @ Base.MainInclude ./client.jl:489 [23] top-level scope @ none:6 [24] eval @ ./boot.jl:385 [inlined] [25] exec_options(opts::Base.JLOptions) @ Base ./client.jl:291 [26] _start() @ Base ./client.jl:552 [ Info: testing OpenSpiel: goofspiel(imp_info=True,num_cards=4,points_order=descending) ┌ Info: testing TigerProblemEnv |> ActionTransformedEnv, you need to manually check these traits to make sure they are implemented correctly! │ NumAgentStyle(env) = SingleAgent() │ DynamicStyle(env) = Sequential() │ ActionStyle(env) = MinimalActionSet() │ InformationStyle(env) = ImperfectInformation() │ StateStyle(env) = (Observation{Int64}(), InternalState{Int64}()) │ RewardStyle(env) = StepReward() │ UtilityStyle(env) = GeneralSum() └ ChanceStyle(env) = Stochastic() ┌ Info: testing TigerProblemEnv |> DefaultStateStyleEnv, you need to manually check these traits to make sure they are implemented correctly! │ NumAgentStyle(env) = SingleAgent() │ DynamicStyle(env) = Sequential() │ ActionStyle(env) = MinimalActionSet() │ InformationStyle(env) = ImperfectInformation() │ StateStyle(env) = (Observation{Int64}(), InternalState{Int64}()) │ RewardStyle(env) = StepReward() │ UtilityStyle(env) = GeneralSum() └ ChanceStyle(env) = Stochastic() ┌ Info: testing TigerProblemEnv |> MaxTimeoutEnv, you need to manually check these traits to make sure they are implemented correctly! │ NumAgentStyle(env) = SingleAgent() │ DynamicStyle(env) = Sequential() │ ActionStyle(env) = MinimalActionSet() │ InformationStyle(env) = ImperfectInformation() │ StateStyle(env) = (Observation{Int64}(), InternalState{Int64}()) │ RewardStyle(env) = StepReward() │ UtilityStyle(env) = GeneralSum() └ ChanceStyle(env) = Stochastic() ┌ Info: testing TigerProblemEnv |> RewardTransformedEnv, you need to manually check these traits to make sure they are implemented correctly! │ NumAgentStyle(env) = SingleAgent() │ DynamicStyle(env) = Sequential() │ ActionStyle(env) = MinimalActionSet() │ InformationStyle(env) = ImperfectInformation() │ StateStyle(env) = (Observation{Int64}(), InternalState{Int64}()) │ RewardStyle(env) = StepReward() │ UtilityStyle(env) = GeneralSum() └ ChanceStyle(env) = Stochastic() ┌ Info: testing TigerProblemEnv |> RewardOverriddenEnv, you need to manually check these traits to make sure they are implemented correctly! │ NumAgentStyle(env) = SingleAgent() │ DynamicStyle(env) = Sequential() │ ActionStyle(env) = MinimalActionSet() │ InformationStyle(env) = ImperfectInformation() │ StateStyle(env) = (Observation{Int64}(), InternalState{Int64}()) │ RewardStyle(env) = StepReward() │ UtilityStyle(env) = GeneralSum() └ ChanceStyle(env) = Stochastic() ┌ Info: testing CartPoleEnv |> StateCachedEnv, you need to manually check these traits to make sure they are implemented correctly! │ NumAgentStyle(env) = SingleAgent() │ DynamicStyle(env) = Sequential() │ ActionStyle(env) = MinimalActionSet() │ InformationStyle(env) = ImperfectInformation() │ StateStyle(env) = Observation{Any}() │ RewardStyle(env) = StepReward() │ UtilityStyle(env) = GeneralSum() └ ChanceStyle(env) = Stochastic() ┌ Info: testing KuhnPokerEnv |> StochasticEnv, you need to manually check these traits to make sure they are implemented correctly! │ NumAgentStyle(env) = MultiAgent{2}() │ DynamicStyle(env) = Sequential() │ ActionStyle(env) = MinimalActionSet() │ InformationStyle(env) = ImperfectInformation() │ StateStyle(env) = InformationSet{Tuple{Vararg{Symbol}}}() │ RewardStyle(env) = TerminalReward() │ UtilityStyle(env) = ZeroSum() └ ChanceStyle(env) = Stochastic() ┌ Info: testing RockPaperScissorsEnv, you need to manually check these traits to make sure they are implemented correctly! │ NumAgentStyle(env) = MultiAgent{2}() │ DynamicStyle(env) = Simultaneous() │ ActionStyle(env) = MinimalActionSet() │ InformationStyle(env) = ImperfectInformation() │ StateStyle(env) = Observation{Int64}() │ RewardStyle(env) = TerminalReward() │ UtilityStyle(env) = ZeroSum() └ ChanceStyle(env) = Deterministic() Test Summary: | Pass Error Total Time ReinforcementLearningEnvironments | 380291 2 380293 40.2s examples | 214307 214307 9.2s 3rd_party | 149428 2 149430 29.7s acrobot_env | 3211 3211 1.4s atari | 144211 144211 27.2s gym envs | None 0.1s OpenSpielEnv | 2006 2 2008 0.8s random policy with OpenSpielEnv | 1 1 2 0.7s random policy with OpenSpielEnv | 5 1 6 0.0s random policy with OpenSpielEnv | 2000 2000 0.0s snake game env | None 0.0s wrappers | 16556 16556 1.2s ERROR: LoadError: Some tests did not pass: 380291 passed, 0 failed, 2 errored, 0 broken. in expression starting at /Users/joelr/Work/Julia/ReinforcementLearning.jl/src/ReinforcementLearningEnvironments/test/runtests.jl:19 ERROR: Package ReinforcementLearningEnvironments errored during testing
I'm looking into it
OpenSpiel tests pass and RL Env builds fine but