Closed rcalxrc08 closed 4 years ago
I'll add support for that.
julia> using VectorizedRNG
julia> rand(local_rng(), 30)'
1×30 LinearAlgebra.Adjoint{Float64,Array{Float64,1}}:
0.787765 0.187013 0.646974 0.965822 0.58504 0.592439 0.259422 0.711535 0.465474 … 0.171145 0.990088 0.338733 0.880647 0.122954 0.407847 0.587394 0.335888 0.996064
julia> VectorizedRNG.seed!(1)
julia> rand(local_rng(), 30)'
1×30 LinearAlgebra.Adjoint{Float64,Array{Float64,1}}:
0.371016 0.804553 0.243923 0.261726 0.875966 0.942672 0.875786 0.0255004 0.236359 … 0.628247 0.814513 0.924231 0.398405 0.604068 0.915064 0.984332 0.773448 0.325699
julia> rand(local_rng(), 30)'
1×30 LinearAlgebra.Adjoint{Float64,Array{Float64,1}}:
0.0768554 0.841872 0.721168 0.272423 0.282721 0.351876 0.0552785 0.251814 0.548307 … 0.235919 0.953537 0.0733153 0.867094 0.401489 0.286259 0.603014 0.627845 0.193328
julia> VectorizedRNG.seed!(1)
julia> rand(local_rng(), 30)'
1×30 LinearAlgebra.Adjoint{Float64,Array{Float64,1}}:
0.371016 0.804553 0.243923 0.261726 0.875966 0.942672 0.875786 0.0255004 0.236359 … 0.628247 0.814513 0.924231 0.398405 0.604068 0.915064 0.984332 0.773448 0.325699
julia> rand(local_rng(), 30)'
1×30 LinearAlgebra.Adjoint{Float64,Array{Float64,1}}:
0.0768554 0.841872 0.721168 0.272423 0.282721 0.351876 0.0552785 0.251814 0.548307 … 0.235919 0.953537 0.0733153 0.867094 0.401489 0.286259 0.603014 0.627845 0.193328
Note that the streams will not be identical across different CPUs.
I can't find a proper way to specify the seed of the parallel rng. Is it possible?