Open hzgzh opened 2 years ago
Kernel PCA reconstructions is always approximate, especially out-of-sample, as it generally requires solving a quadratic optimization problem. So, the reconstruction will be always off with respect to the original data. The package uses a heuristic for an approximate reconstruction, i.e. quadratic optimization, which produces even worst approximation. See https://github.com/JuliaStats/MultivariateStats.jl/issues/125 for references.
I try using KernelPCA to transform and reconstruct the data, but original data and reconstruct data is not approx.
how to make the reconstruct data approximate the origin data