Open Justinezgh opened 1 year ago
To do
Update: I changed it to [0.33, 0.83] the results are below
For these 3 experiments I use the following MUSE algorithm configuration:
theta_start = jnp.array([0.33, 0.83])
prob.solve(
result=result,
α=0.2,
θ_start=theta_start,
θ_rtol=0,
z_tol=1e-2,
progress=True,
maxsteps=100,
nsims=100,
rng=jax.random.PRNGKey(1)
)
simulator configuration:
nb_latent_variables = 100
model = partial(
lensingLogNormal,
N=nb_latent_variables,
map_size=5,
gal_per_arcmin2=30,
sigma_e=0.2,
model_type='lognormal',
non_gaussianity=0.03
)
Convergence: Loss of the last 90 iterations:
simulator configuration:
nb_latent_variables = 200
model = partial(
lensingLogNormal,
N=nb_latent_variables,
map_size=5,
gal_per_arcmin2=30,
sigma_e=0.2,
model_type='lognormal',
non_gaussianity=0.03
)
Convergence: Loss of the last 90 iterations:
simulator configuration:
nb_latent_variables = 250
model = partial(
lensingLogNormal,
N=nb_latent_variables,
map_size=5,
gal_per_arcmin2=30,
sigma_e=0.2,
model_type='lognormal',
non_gaussianity=0.03
)
Convergence:
Loss of the last 90 iterations:
simulator configuration:
nb_latent_variables = 500
model = partial(
lensingLogNormal,
N=nb_latent_variables,
map_size=5,
gal_per_arcmin2=30,
sigma_e=0.2,
model_type='lognormal',
non_gaussianity=0.03
)
(I don't have the full field contour for this one because 500 * 500 was too much for my GPUs memory)
Convergence:
Loss:
To do
- [x] change the starting point theta (was set to the fiducial params) to check if it can still converge
Update: I changed it to [0.33, 0.83] the results are below
- [ ] reduce the step size to make the score closer to zero
For these 3 experiments I use the following MUSE algorithm configuration:
simulator configuration:
Convergence:
Loss of the last 90 iterations:
simulator configuration:
Convergence:
Loss of the last 90 iterations:
simulator configuration:
Convergence:
Loss of the last 90 iterations: