This is the main page.
Closed K3ST143 closed 1 month ago
MIT License
Copyright (c) 2024 Semir Awel
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Credit
K3ST a pioneering digital publisher founded by a visionary named Semir Awel. K3ST is founded on 13 April 2018.
pip install -r requirements.txt
streamlit run app/main.py
`# app/init.py from flask import Flask from app.database import init_db
def create_app(): app = Flask(name) app.config.from_object('app.config.Config') init_db(app) return app `
`# app/main.py import streamlit as st from encryption import encrypt_data, decrypt_data from licensing import generate_licensing_agreement from registration import verify_originality from branding import search_trademarks from patents import generate_patent_application from financials import fetch_stock_data, fetch_financial_data, generate_investor_relations_info from ethics import generate_ethics_document from semrush_integration import get_seo_insights from smartsheet_integration import get_project_data
st.title("K3ST Innovates Digitally")
st.subheader("Encryption") data = st.text_input("Enter data to encrypt") if st.button("Encrypt"): encrypted_data = encrypt_data(data) st.write("Encrypted Data:", encrypted_data)
st.subheader("Licensing Agreement") creator_name = st.text_input("Creator Name") work_title = st.text_input("Work Title") if st.button("Generate Agreement"): agreement = generate_licensing_agreement(creator_name, work_title) st.write("Licensing Agreement:", agreement)
st.subheader("Verify Originality") work_description = st.text_area("Work Description") if st.button("Verify"): verification_result = verify_originality(work_description) st.write("Verification Result:", verification_result)
st.subheader("Trademark Search") query = st.text_input("Trademark Query") if st.button("Search"): trademarks = search_trademarks(query) st.write("Trademarks:", trademarks)
st.subheader("SEO Insights") domain = st.text_input("Enter domain for SEO insights") if st.button("Get SEO Insights"): api_key = st.secrets["SEMRUSH_API_KEY"] seo_insights = get_seo_insights(api_key, domain) st.write("SEO Insights:", seo_insights)
st.subheader("Project Management Data") sheet_id = st.text_input("Enter Smartsheet ID") if st.button("Get Project Data"): api_token = st.secrets["SMARTSHEET_API_TOKEN"] project_data = get_project_data(api_token, sheet_id) st.write("Project Data:", project_data) `
`# app/encryption.py from cryptography.fernet import Fernet
key = Fernet.generate_key() cipher_suite = Fernet(key)
def encrypt_data(data): return cipher_suite.encrypt(data.encode()).decode()
def decrypt_data(encrypted_data): return cipher_suite.decrypt(encrypted_data.encode()).decode() `
# app/licensing.py def generate_licensing_agreement(creator_name, work_title): return f"Licensing Agreement for {work_title} by {creator_name}"
# app/registration.py def verify_originality(work_description): return f"Verification result for: {work_description}"
# app/branding.py def search_trademarks(query): return f"Trademark search results for: {query}"
# app/patents.py def generate_patent_application(): return "Patent application generated."
`# app/financials.py def fetch_stock_data(): return "Stock data fetched."
def fetch_financial_data(): return "Financial data fetched."
def generate_investor_relations_info(): return "Investor relations info generated." `
`# app/init.py from flask import Flask from app.database import init_db
def create_app(): app = Flask(name) app.config.from_object('app.config.Config') init_db(app) return app `
`# app/main.py
import streamlit as st from encryption import encrypt_data, decrypt_data from licensing import generate_licensing_agreement from registration import verify_originality from branding import search_trademarks from patents import generate_patent_application from financials import fetch_stock_data, fetch_financial_data, generate_investor_relations_info from ethics import generate_ethics_document from semrush_integration import get_seo_insights from smartsheet_integration import get_project_data
st.title("K3ST Innovates Digitally")
st.subheader("Encryption") data = st.text_input("Enter data to encrypt") if st.button("Encrypt"): encrypted_data = encrypt_data(data) st.write("Encrypted Data:", encrypted_data)
st.subheader("Licensing Agreement") creator_name = st.text_input("Creator Name") work_title = st.text_input("Work Title") if st.button("Generate Agreement"): agreement = generate_licensing_agreement(creator_name, work_title) st.write("Licensing Agreement:", agreement)
st.subheader("Verify Originality") work_description = st.text_area("Work Description") if st.button("Verify"): verification_result = verify_originality(work_description) st.write("Verification Result:", verification_result)
st.subheader("Trademark Search") query = st.text_input("Trademark Query") if st.button("Search"): trademarks = search_trademarks(query) st.write("Trademarks Found:", trademarks)
st.subheader("Patent Application") inventor_name = st.text_input("Inventor Name") invention_title = st.text_input("Invention Title") invention_description = st.text_area("Invention Description") if st.button("Generate Application"): application = generate_patent_application(inventor_name, invention_title, invention_description) st.write("Patent Application:", application)
st.subheader("Financial Information") symbol = st.text_input("Stock Symbol", value="K3ST") api_key = st.text_input("API Key") if st.button("Fetch Financial Data"): stock = fetch_stock_data(symbol) financial_data = fetch_financial_data(symbol, api_key) investor_relations_info = generate_investor_relations_info(stock, financial_data) st.write("Investor Relations Information:", investor_relations_info)
st.subheader("Business Conduct and Code of Ethics") if st.button("Generate Ethics Document"): ethics_document = generate_ethics_document() st.write(ethics_document)
st.subheader("SEO Insights") semrush_api_key = st.text_input("Semrush API Key") domain = st.text_input("Domain") if st.button("Get SEO Insights"): seo_insights = get_seo_insights(semrush_api_key, domain) st.write("SEO Insights:", seo_insights)
st.subheader("Project Management") smartsheet_api_token = st.text_input("Smartsheet API Token") sheet_id = st.text_input("Sheet ID") if st.button("Get Project Data"): project_data = get_project_data(smartsheet_api_token, sheet_id) st.write("Project Data:", project_data)
`
`# app/encryption.py
from cryptography.fernet import Fernet
key = Fernet.generate_key() cipher_suite = Fernet(key)
def encrypt_data(data): encrypted_data = cipher_suite.encrypt(data.encode()) return encrypted_data
def decrypt_data(encrypted_data): decrypted_data = cipher_suite.decrypt(encrypted_data).decode() return decrypted_data
`
`# app/licensing.py
from transformers import pipeline
generator = pipeline('text-generation', model='gpt-3')
def generate_licensing_agreement(creator_name, work_title): prompt = f"Create a licensing agreement for {creator_name}'s work titled '{work_title}'." agreement = generator(prompt, max_length=500) return agreement[0]['generated_text']
`
`# app/registration.py
from transformers import pipeline
classifier = pipeline('text-classification', model='bert-base-uncased')
def verify_originality(work_description): result = classifier(work_description) return result
`
`# app/branding.py
import requests
def search_trademarks(query): response = requests.get(f"https://api.trademarksearch.com/search?q={query}") return response.json()
`
`# app/patents.py
from transformers import pipeline
generator = pipeline('text-generation', model='gpt-3')
def generate_patent_application(inventor_name, invention_title, invention_description): prompt = f"Create a patent application for {inventor_name}'s invention titled '{invention_title}'. Description: {invention_description}" application = generator(prompt, max_length=1000) return application[0]['generated_text']
`
`# app/financials.py
import yfinance as yf import requests import pandas as pd
def fetch_stock_data(symbol): stock = yf.Ticker(symbol) return stock
def fetch_financial_data(symbol, api_key): url = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={symbol}&apikey={api_key}" response = requests.get(url) return response.json()
def generate_investor_relations_info(stock, financial_data): info = stock.info financial_df = pd.DataFrame([financial_data])
investor_relations_info = {
"Company Name": info.get("longName"),
"Sector": info.get("sector"),
"Industry": info.get("industry"),
"Market Cap": info.get("marketCap"),
"PE Ratio": info.get("trailingPE"),
"Dividend Yield": info.get("dividendYield"),
"Revenue": financial_df["RevenueTTM"].values[0],
"Net Income": financial_df["NetIncomeTTM"].values[0],
"Total Assets": financial_df["TotalAssets"].values[0],
"Total Liabilities": financial_df["TotalLiabilities"].values[0],
}
return investor_relations_info
`
`# app/ethics.py
from fpdf import FPDF
class PDF(FPDF): def header(self): self.set_font('Arial', 'B', 12) self.cell(0, 10, 'Business Conduct and Code of Ethics', 0, 1, 'C')
def chapter_title(self, title):
self.set_font('Arial', 'B', 12)
self.cell(0, 10, title, 0, 1, 'L')
self.ln(5)
def chapter_body(self, body):
self.set_font('Arial', '', 12)
self.multi_cell(0, 10, body)
self.ln()
def add_chapter(self, title, body):
self.add_page()
self.chapter_title(title)
self.chapter_body(body)
pdf = PDF() pdf.set_left_margin(10) pdf.set_right_margin(10)
chapters = [ ("Introduction", "Welcome to KID (K3ST INNOVATES DIGITALLY). Our Business Conduct and Code of Ethics outlines the principles and standards that guide our actions and decisions. This document is designed to ensure that all employees, partners, and stakeholders understand and adhere to our ethical values."), ("Core Principles", "Integrity: We act with honesty and adhere to the highest ethical standards.\nRespect: We treat everyone with dignity and respect.\nAccountability: We take responsibility for our actions and their impact.\nTransparency: We operate with openness and clarity."), ("Compliance with Laws and Regulations", "All employees must comply with applicable laws, regulations, and company policies. This includes, but is not limited to, laws related to insider trading, data protection, and intellectual property."), ("Insider Trading", "Insider trading is strictly prohibited. Employees must not use non-public information for personal gain or share such information with others. Violations will result in disciplinary action, including termination and legal consequences."), ("Confidentiality", "Employees must protect confidential information and not disclose it to unauthorized parties. This includes proprietary information, trade secrets, and personal data of employees and customers."), ("Conflict of Interest", "Employees must avoid situations where personal interests conflict with the interests of KID. Any potential conflicts must be disclosed to management immediately."), ("Fair Dealing", "We are committed to fair dealing with our customers, suppliers, competitors, and employees. We do not engage in unfair practices such as manipulation, concealment, or misrepresentation."), ("Anti-Discrimination and Harassment", "We are committed to providing a workplace free from discrimination and harassment. All employees are expected to treat each other with respect and report any incidents of discrimination or harassment."), ("Health and Safety", "We prioritize the health and safety of our employees. All employees must adhere to safety protocols and report any unsafe conditions."), ("Environmental Responsibility", "We are committed to minimizing our environmental impact. Employees are encouraged to adopt sustainable practices and report any environmental concerns."), ("Reporting Violations", "Employees are encouraged to report any violations of this Code of Ethics. Reports can be made anonymously and without fear of retaliation."), ("Enforcement", "Violations of this Code of Ethics will result in disciplinary action, up to and including termination. Legal action may also be pursued where appropriate."), ("Acknowledgment", "All employees must acknowledge that they have read and understood this Code of Ethics and agree to comply with its terms.") ]
for title, body in chapters: pdf.add_chapter(title, body)
pdf.output('Business_Conduct_and_Code_of_Ethics.pdf')
`
`# api/fetch_financial_stock_data.py
pip install requests pandas yfinance
import yfinance as yf
def fetch_stock_data(symbol): stock = yf.Ticker(symbol) return stock
symbol = "K3ST" stock = fetch_stock_data(symbol) print(stock.info)
import requests
def fetch_financial_data(symbol, api_key): url = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={symbol}&apikey={api_key}" response = requests.get(url) return response.json()
api_key = "YOUR_ALPHA_VANTAGE_API_KEY" financial_data = fetch_financial_data(symbol, api_key) print(financial_data)
import pandas as pd
def generate_investor_relations_info(stock, financial_data): info = stock.info financial_df = pd.DataFrame([financial_data])
investor_relations_info = {
"Company Name": info.get("longName"),
"Sector": info.get("sector"),
"Industry": info.get("industry"),
"Market Cap": info.get("marketCap"),
"PE Ratio": info.get("trailingPE"),
"Dividend Yield": info.get("dividendYield"),
"Revenue": financial_df["RevenueTTM"].values[0],
"Net Income": financial_df["NetIncomeTTM"].values[0],
"Total Assets": financial_df["TotalAssets"].values[0],
"Total Liabilities": financial_df["TotalLiabilities"].values[0],
}
return investor_relations_info
investor_relations_info = generate_investor_relations_info(stock, financial_data) print(investor_relations_info)
def display_investor_relations_info(info): print("Investor Relations Information:") for key, value in info.items(): print(f"{key}: {value}")
display_investor_relations_info(investor_relations_info)
`
`# display/logo.js
<!DOCTYPE html>
`
`# app/display_logo.py
import requests import shutil
profile_picture_url = 'https://x.com/SemirKest/profile_image'
local_filename = 'k3st_logo.png'
response = requests.get(profile_picture_url, stream=True) if response.status_code == 200: with open(local_filename, 'wb') as out_file: shutil.copyfileobj(response.raw, out_file) print(f"Profile picture saved as {local_filename}") else: print("Failed to fetch profile picture")
`
`# app/Create_User_Attractive_interface.py
pip install streamlit openai
import openai
openai.api_key = 'YOUR_OPENAI_API_KEY'
def generate_ui_component(prompt): response = openai.Completion.create( engine="text-davinci-003", prompt=prompt, max_tokens=150 ) return response.choices[0].text.strip()
prompt = "Generate a description for a user-friendly login form with email and password fields." ui_description = generate_ui_component(prompt) print(ui_description)
import streamlit as st
ui_description = """ Create a user-friendly login form with the following features:
st.title("Generative AI UI Design") st.subheader("Login Form")
st.write(ui_description)
email = st.text_input("Email") password = st.text_input("Password", type="password") remember_me = st.checkbox("Remember me") login_button = st.button("Login")
if login_button: st.success("Logged in successfully!")
<!DOCTYPE html>
streamlit run app.py
`
`# app/amazon_q.py
pip install boto3
import json import boto3
client = boto3.client('q')
def lambda_handler(event, context):
user_input = event['user_input']
# Call Amazon Q to process the input
response = client.invoke(
FunctionName='AmazonQFunction',
Payload=json.dumps({'input': user_input})
)
# Parse the response
response_payload = json.loads(response['Payload'].read())
return {
'statusCode': 200,
'body': json.dumps(response_payload)
}
import json import boto3
client = boto3.client('q')
def lambda_handler(event, context):
user_input = event['user_input']
# Call Amazon Q to process the input
response = client.invoke(
FunctionName='AmazonQFunction',
Payload=json.dumps({'input': user_input})
)
# Parse the response
response_payload = json.loads(response['Payload'].read())
return {
'statusCode': 200,
'body': json.dumps(response_payload)
}
`
`### 3. requirements.txt
streamlit
openai
boto3
requests
pandas
cryptography
fpdf
`
`# app/semrush_integration.py
import semrush
def get_seo_insights(api_key, domain): client = semrush.Client(api_key) report = client.domain_organic(domain) return report
`
`# app/smartsheet_integration.py
import smartsheet
def get_project_data(api_token, sheet_id): client = smartsheet.Smartsheet(api_token) sheet = client.Sheets.get_sheet(sheet_id) return sheet
`
Deploy and Test the platform
`# app/main.yml
name: CI
on: push: branches:
jobs: build: runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.x'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt
- name: Run tests
run: |
pytest
git add .github/workflows/main.yml
git commit -m "Add CI workflow for GitHub Actions"
git push origin main
`
` / app/static/css/styles.css / body { font-family: Arial, sans-serif; }
`
` // app/static/js/scripts.js console.log("JavaScript loaded.");
`
`
<!DOCTYPE html>
This is the main page.
`
`
import json
def lambda_handler(event, context): body = json.loads(event.get('body', '{}')) return { 'statusCode': 200, 'body': json.dumps({'message': 'Hello from Lambda!', 'input': body}) }
`
`
boto3 requests
`
`
from flask import Blueprint, request, jsonify from werkzeug.security import generate_password_hash, check_password_hash
auth_bp = Blueprint('auth', name)
users = {} # This should be replaced with a database
@auth_bp.route('/register', methods=['POST']) def register(): data = request.get_json() username = data.get('username') password = generate_password_hash(data.get('password')) users[username] = password return jsonify({"message": "User registered successfully"}), 201
@auth_bp.route('/login', methods=['POST']) def login(): data = request.get_json() username = data.get('username') password = data.get('password') stored_password = users.get(username) if stored_password and check_password_hash(stored_password, password): return jsonify({"message": "Login successful"}), 200 return jsonify({"message": "Invalid credentials"}), 401
`
`
from flask_sqlalchemy import SQLAlchemy
db = SQLAlchemy()
def init_db(app): db.init_app(app) with app.app_context(): db.create_all() `
`
import logging
def setup_logging(): logging.basicConfig(level=logging.INFO) logger = logging.getLogger(name) return logger
`
`
import os
class Config: SECRET_KEY = os.environ.get('SECRET_KEY') or 'your_secret_key' SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or 'sqlite:///app.db' SQLALCHEMY_TRACK_MODIFICATIONS = False
`
`
from flask import Blueprint, jsonify
api_bp = Blueprint('api', name)
@api_bp.route('/status', methods=['GET']) def status(): return jsonify({"status": "API is running"}), 200
`
`
import hashlib
def hash_string(s): return hashlib.sha256(s.encode()).hexdigest()
`
`
def track_event(event_name, data):
print(f"Tracking event: {event_name} with data: {data}")
`
`
<!DOCTYPE html>
`
`
{% extends "base.html" %}
{% block title %}Error{% endblock %}
{% block content %}
{{ error_message }}
{% endblock %}
`
`
def parse_event(event): return event.get('body')
`
`
import json
def lambda_handler(event, context): body = json.loads(event.get('body', '{}')) return { 'statusCode': 200, 'body': json.dumps({'message': 'Hello from Lambda!', 'input': body}) }
`
`
def test_sample(): assert 1 + 1 == 2
`
`
This directory contains project documentation, including API documentation and user guides.
`
mkdir -p app/static/css app/static/js app/templates lambda touch README.md LICENSE requirements.txt app/init.py app/main.py app/encryption.py app/licensing.py app/registration.py app/branding.py app/patents.py app/financials.py app/ethics.py app/semrush_integration.py app/smartsheet_integration.py app/static/css/styles.css app/static/js/scripts.js app/templates/index.html lambda/lambda_function.py lambda/requirements.txt