Closed changfali closed 2 years ago
this is the logim_50000.png in the folder:exp_iron_stage2/xmen/
You might be having similar issue as this one: https://github.com/Kai-46/IRON/issues/7 . I'm not totally sure what went wrong since I could not reproduce it on my side; my biggest guess is that you might be having a discrepancy in python package versions. How did you create your conda environments?
For dragon data, please refer to this: https://github.com/Kai-46/IRON/blob/8e9a7c172542afd52b8e6ef28bc96ad52b5ffd5a/download_data.sh#L4
Thanks Kai! You are right!! It's the reason of python package versions, I re-create my environments just like you, and get good result now. But on your side, which package will lead to that different result: Envi before: Package Version
absl-py 1.2.0 asttokens 2.0.5 beautifulsoup4 4.11.1 bleach 5.0.1 cachetools 5.2.0 certifi 2022.6.15 cffi 1.15.1 charset-normalizer 2.1.0 colorama 0.4.5 ConfigArgParse 1.5.3 cycler 0.11.0 Cython 0.29.28 debugpy 1.6.2 decorator 5.1.1 defusedxml 0.7.1 deprecation 2.1.0 entrypoints 0.4 executing 0.8.3 fastjsonschema 2.16.1 filelock 3.7.1 fonttools 4.33.3 gdown 4.5.1 google-auth 2.10.0 google-auth-oauthlib 0.4.6 grpcio 1.47.0 icecream 2.1.3 idna 3.3 igl 2.2.1 imageio 2.21.1 imageio-ffmpeg 0.4.7 importlib-metadata 4.12.0 importlib-resources 5.9.0 ipykernel 6.15.1 ipython 8.2.0 ipython-genutils 0.2.0 ipywidgets 7.7.1 jedi 0.18.1 Jinja2 3.1.2 joblib 1.1.0 json5 0.9.9 jsonschema 4.9.1 jupyter-client 7.3.4 jupyter-core 4.11.1 jupyter-packaging 0.12.2 jupyter-server 1.18.1 jupyterlab 3.4.5 jupyterlab-pygments 0.2.2 jupyterlab-server 2.15.0 jupyterlab-widgets 1.1.1 kiwisolver 1.4.3 kornia 0.6.6 lxml 4.9.1 Markdown 3.4.1 MarkupSafe 2.1.1 mathutils 2.81.2 matplotlib 3.5.2 matplotlib-inline 0.1.3 mistune 0.8.4 nbclassic 0.4.3 nbclient 0.6.6 nbconvert 6.5.3 nbformat 5.4.0 nest-asyncio 1.5.5 networkx 2.8.5 notebook 6.4.12 notebook-shim 0.1.0 numpy 1.22.3 oauthlib 3.2.0 open3d 0.15.2 opencv-python 4.6.0.66 packaging 21.3 pandas 1.4.3 pandocfilters 1.5.0 parso 0.8.3 pexpect 4.8.0 pickleshare 0.7.5 Pillow 9.1.0 pip 21.2.4 pkgutil_resolve_name 1.3.10 plyfile 0.7.4 prometheus-client 0.14.1 prompt-toolkit 3.0.29 protobuf 3.19.4 psutil 5.9.1 ptyprocess 0.7.0 pure-eval 0.2.2 pyasn1 0.4.8 pyasn1-modules 0.2.8 pycparser 2.21 Pygments 2.11.2 pyhocon 0.3.59 PyMCubes 0.1.2 pyparsing 2.4.7 pypoisson 0.10 pyquaternion 0.9.9 pyrsistent 0.18.1 PySocks 1.7.1 python-dateutil 2.8.2 pytz 2022.2 PyWavelets 1.3.0 PyYAML 6.0 pyzmq 23.2.0 requests 2.28.1 requests-oauthlib 1.3.1 rsa 4.9 scikit-image 0.19.3 scikit-learn 1.1.2 scipy 1.8.1 Send2Trash 1.8.0 setuptools 64.0.1 six 1.16.0 sniffio 1.2.0 soupsieve 2.3.2.post1 stack-data 0.2.0 tensorboard 2.10.0 tensorboard-data-server 0.6.1 tensorboard-plugin-wit 1.8.1 tensorboardX 2.5.1 terminado 0.15.0 threadpoolctl 3.1.0 tifffile 2022.8.8 tinycss2 1.1.1 tomlkit 0.11.3 torch 1.9.1+cu111 torchaudio 0.9.1 torchvision 0.10.1+cu111 tornado 6.2 tqdm 4.64.0 traitlets 5.3.0 trimesh 3.13.0 typing_extensions 4.1.1 urllib3 1.26.11 wcwidth 0.2.5 webencodings 0.5.1 websocket-client 1.3.3 Werkzeug 2.2.2 wheel 0.37.1 widgetsnbextension 3.6.1 zipp 3.8.1
Envi now: Package Version
absl-py 1.2.0 asttokens 2.0.8 beautifulsoup4 4.11.1 cachetools 5.2.0 certifi 2022.6.15 charset-normalizer 2.1.0 colorama 0.4.5 ConfigArgParse 1.5.3 executing 0.10.0 filelock 3.8.0 gdown 4.5.1 google-auth 2.10.0 google-auth-oauthlib 0.4.6 grpcio 1.47.0 icecream 2.1.3 idna 3.3 igl 2.2.1 imageio 2.21.1 imageio-ffmpeg 0.4.7 importlib-metadata 4.12.0 kornia 0.6.6 Markdown 3.4.1 MarkupSafe 2.1.1 networkx 2.8.5 numpy 1.23.2 oauthlib 3.2.0 opencv-python 4.6.0.66 packaging 21.3 Pillow 9.2.0 pip 22.1.2 protobuf 3.19.4 pyasn1 0.4.8 pyasn1-modules 0.2.8 Pygments 2.13.0 pyhocon 0.3.59 PyMCubes 0.1.2 pyparsing 2.4.7 PySocks 1.7.1 PyWavelets 1.3.0 requests 2.28.1 requests-oauthlib 1.3.1 rsa 4.9 scikit-image 0.19.3 scipy 1.9.0 setuptools 61.2.0 six 1.16.0 soupsieve 2.3.2.post1 tensorboard 2.10.0 tensorboard-data-server 0.6.1 tensorboard-plugin-wit 1.8.1 tifffile 2022.8.12 torch 1.11.0+cu113 torchvision 0.12.0+cu113 tqdm 4.64.0 trimesh 3.13.4 typing_extensions 4.3.0 urllib3 1.26.11 Werkzeug 2.2.2 wheel 0.37.1 zipp 3.8.1
Hi Kai! I just use train_scene.sh with "xmen" data, but the result mesh in ./exp_iron_stage2/xmen/mesh_and_materials_50000 is too smooth: this is the config file: general { base_exp_dir = ./exp_iron_stage1/CASE_NAME/ recording = [ ./, ./models ] }
dataset { data_dir = ./datasets/Luanetal2021/CASE_NAME/train/ render_cameras_name = cameras_sphere.npz object_cameras_name = cameras_sphere.npz }
train { learning_rate = 5e-4 learning_rate_alpha = 0.05 end_iter = 100001
}
model { nerf { D = 8, d_in = 4, d_in_view = 3, W = 256, multires = 10, multires_view = 4, output_ch = 4, skips=[4], use_viewdirs=True }
} Do you know why?
And I can't find the data "dragon" for training and testing in the dataset: could you provide it for me to compare with you results?