Open mukesh-2538 opened 4 years ago
I am trying it on custom dataset.
Try moving the following codes:
Sorry that I'm working on other projects, so I don't have GPUs to test this commit. It should solve the problem. Please tell me if it doesn't.
are the changes to be made in visual_genome .py?
yes
It is working. Thankyou so much
i think you will get this file("VG_stanford_filtered_with_attribute_train_statistics.cache") along with the pretrained weights.
i think you will get this file("VG_stanford_filtered_with_attribute_train_statistics.cache") along with the pretrained weights.
I have downloaded the pretrained model folder. In that folder, this file is already present.
Are you trying it on custom images?
Are you trying it on custom images?
Yes
Are you trying it on custom images?
Yes is the last_checkpoint file pointing to the correct path on your machine?
Are you trying it on custom images?
Yes is the last_checkpoint file pointing to the correct path on your machine?
Yes. ("MODEL.PRETRAINED_DETECTOR_CKPT causal_motifs_sgdet/model_0028000.pth")
Hi @mukesh-2538 , after solving your error, this error pops up. AttributeError: 'VGDataset' object has no attribute 'gt_classes' Did you solve this? Also, my question is why does it require ground truth for SGDET on custom images?
@Ankit-Vohra I am facing this issue in the latest commit
❓ Questions and Help
2020-08-14 07:57:08,698 maskrcnn_benchmark INFO: Using 1 GPUs 2020-08-14 07:57:08,698 maskrcnn_benchmark INFO: AMP_VERBOSE: False DATALOADER: ASPECT_RATIO_GROUPING: True NUM_WORKERS: 4 SIZE_DIVISIBILITY: 32 DATASETS: TEST: ('VG_stanford_filtered_with_attribute_test',) TRAIN: ('VG_stanford_filtered_with_attribute_train',) VAL: ('VG_stanford_filtered_with_attribute_val',) DETECTED_SGG_DIR: /content/image DTYPE: float16 GLOVE_DIR: /content/glove INPUT: BRIGHTNESS: 0.0 CONTRAST: 0.0 HUE: 0.0 MAX_SIZE_TEST: 1000 MAX_SIZE_TRAIN: 1000 MIN_SIZE_TEST: 600 MIN_SIZE_TRAIN: (600,) PIXEL_MEAN: [102.9801, 115.9465, 122.7717] PIXEL_STD: [1.0, 1.0, 1.0] SATURATION: 0.0 TO_BGR255: True VERTICAL_FLIP_PROB_TRAIN: 0.0 MODEL: ATTRIBUTE_ON: False BACKBONE: CONV_BODY: R-101-FPN FREEZE_CONV_BODY_AT: 2 CLS_AGNOSTIC_BBOX_REG: False DEVICE: cuda FBNET: ARCH: default ARCH_DEF: BN_TYPE: bn DET_HEAD_BLOCKS: [] DET_HEAD_LAST_SCALE: 1.0 DET_HEAD_STRIDE: 0 DW_CONV_SKIP_BN: True DW_CONV_SKIP_RELU: True KPTS_HEAD_BLOCKS: [] KPTS_HEAD_LAST_SCALE: 0.0 KPTS_HEAD_STRIDE: 0 MASK_HEAD_BLOCKS: [] MASK_HEAD_LAST_SCALE: 0.0 MASK_HEAD_STRIDE: 0 RPN_BN_TYPE: RPN_HEAD_BLOCKS: 0 SCALE_FACTOR: 1.0 WIDTH_DIVISOR: 1 FLIP_AUG: False FPN: USE_GN: False USE_RELU: False GROUP_NORM: DIM_PER_GP: -1 EPSILON: 1e-05 NUM_GROUPS: 32 KEYPOINT_ON: False MASK_ON: False META_ARCHITECTURE: GeneralizedRCNN PRETRAINED_DETECTOR_CKPT: /content/sgdetmodel/ RELATION_ON: True RESNETS: BACKBONE_OUT_CHANNELS: 256 DEFORMABLE_GROUPS: 1 NUM_GROUPS: 32 RES2_OUT_CHANNELS: 256 RES5_DILATION: 1 STAGE_WITH_DCN: (False, False, False, False) STEM_FUNC: StemWithFixedBatchNorm STEM_OUT_CHANNELS: 64 STRIDE_IN_1X1: False TRANS_FUNC: BottleneckWithFixedBatchNorm WIDTH_PER_GROUP: 8 WITH_MODULATED_DCN: False RETINANET: ANCHOR_SIZES: (32, 64, 128, 256, 512) ANCHOR_STRIDES: (8, 16, 32, 64, 128) ASPECT_RATIOS: (0.5, 1.0, 2.0) BBOX_REG_BETA: 0.11 BBOX_REG_WEIGHT: 4.0 BG_IOU_THRESHOLD: 0.4 FG_IOU_THRESHOLD: 0.5 INFERENCE_TH: 0.05 LOSS_ALPHA: 0.25 LOSS_GAMMA: 2.0 NMS_TH: 0.4 NUM_CLASSES: 81 NUM_CONVS: 4 OCTAVE: 2.0 PRE_NMS_TOP_N: 1000 PRIOR_PROB: 0.01 SCALES_PER_OCTAVE: 3 STRADDLE_THRESH: 0 USE_C5: True RETINANET_ON: False ROI_ATTRIBUTE_HEAD: ATTRIBUTE_BGFG_RATIO: 3 ATTRIBUTE_BGFG_SAMPLE: True ATTRIBUTE_LOSS_WEIGHT: 1.0 FEATURE_EXTRACTOR: FPN2MLPFeatureExtractor MAX_ATTRIBUTES: 10 NUM_ATTRIBUTES: 201 POS_WEIGHT: 50.0 PREDICTOR: FPNPredictor SHARE_BOX_FEATURE_EXTRACTOR: True USE_BINARY_LOSS: True ROI_BOX_HEAD: CONV_HEAD_DIM: 256 DILATION: 1 FEATURE_EXTRACTOR: FPN2MLPFeatureExtractor MLP_HEAD_DIM: 4096 NUM_CLASSES: 151 NUM_STACKED_CONVS: 4 POOLER_RESOLUTION: 7 POOLER_SAMPLING_RATIO: 2 POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125) PREDICTOR: FPNPredictor USE_GN: False ROI_HEADS: BATCH_SIZE_PER_IMAGE: 256 BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0) BG_IOU_THRESHOLD: 0.3 DETECTIONS_PER_IMG: 80 FG_IOU_THRESHOLD: 0.5 NMS: 0.3 NMS_FILTER_DUPLICATES: True POSITIVE_FRACTION: 0.5 POST_NMS_PER_CLS_TOPN: 300 SCORE_THRESH: 0.01 USE_FPN: True ROI_KEYPOINT_HEAD: CONV_LAYERS: (512, 512, 512, 512, 512, 512, 512, 512) FEATURE_EXTRACTOR: KeypointRCNNFeatureExtractor MLP_HEAD_DIM: 1024 NUM_CLASSES: 17 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_SCALES: (0.0625,) PREDICTOR: KeypointRCNNPredictor RESOLUTION: 14 SHARE_BOX_FEATURE_EXTRACTOR: True ROI_MASK_HEAD: CONV_LAYERS: (256, 256, 256, 256) DILATION: 1 FEATURE_EXTRACTOR: ResNet50Conv5ROIFeatureExtractor MLP_HEAD_DIM: 1024 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_SCALES: (0.0625,) POSTPROCESS_MASKS: False POSTPROCESS_MASKS_THRESHOLD: 0.5 PREDICTOR: MaskRCNNC4Predictor RESOLUTION: 14 SHARE_BOX_FEATURE_EXTRACTOR: True USE_GN: False ROI_RELATION_HEAD: ADD_GTBOX_TO_PROPOSAL_IN_TRAIN: True BATCH_SIZE_PER_IMAGE: 1024 CAUSAL: CONTEXT_LAYER: motifs EFFECT_ANALYSIS: True EFFECT_TYPE: TDE FUSION_TYPE: sum SEPARATE_SPATIAL: False SPATIAL_FOR_VISION: True CONTEXT_DROPOUT_RATE: 0.2 CONTEXT_HIDDEN_DIM: 512 CONTEXT_OBJ_LAYER: 1 CONTEXT_POOLING_DIM: 4096 CONTEXT_REL_LAYER: 1 EMBED_DIM: 200 FEATURE_EXTRACTOR: RelationFeatureExtractor LABEL_SMOOTHING_LOSS: False NUM_CLASSES: 51 NUM_SAMPLE_PER_GT_REL: 4 POOLING_ALL_LEVELS: True POSITIVE_FRACTION: 0.25 PREDICTOR: CausalAnalysisPredictor PREDICT_USE_BIAS: True PREDICT_USE_VISION: True REL_PROP: [0.01858, 0.00057, 0.00051, 0.00109, 0.0015, 0.00489, 0.00432, 0.02913, 0.00245, 0.00121, 0.00404, 0.0011, 0.00132, 0.00172, 5e-05, 0.00242, 0.0005, 0.00048, 0.00208, 0.15608, 0.0265, 0.06091, 0.009, 0.00183, 0.00225, 0.0009, 0.00028, 0.00077, 0.04844, 0.08645, 0.31621, 0.00088, 0.00301, 0.00042, 0.00186, 0.001, 0.00027, 0.01012, 0.0001, 0.01286, 0.00647, 0.00084, 0.01077, 0.00132, 0.00069, 0.00376, 0.00214, 0.11424, 0.01205, 0.02958] REQUIRE_BOX_OVERLAP: False TRANSFORMER: DROPOUT_RATE: 0.1 INNER_DIM: 2048 KEY_DIM: 64 NUM_HEAD: 8 OBJ_LAYER: 4 REL_LAYER: 2 VAL_DIM: 64 USE_GT_BOX: False USE_GT_OBJECT_LABEL: False RPN: ANCHOR_SIZES: (32, 64, 128, 256, 512) ANCHOR_STRIDE: (4, 8, 16, 32, 64) ASPECT_RATIOS: (0.23232838, 0.63365731, 1.28478321, 3.15089189) BATCH_SIZE_PER_IMAGE: 256 BG_IOU_THRESHOLD: 0.3 FG_IOU_THRESHOLD: 0.7 FPN_POST_NMS_PER_BATCH: False FPN_POST_NMS_TOP_N_TEST: 1000 FPN_POST_NMS_TOP_N_TRAIN: 1000 MIN_SIZE: 0 NMS_THRESH: 0.7 POSITIVE_FRACTION: 0.5 POST_NMS_TOP_N_TEST: 1000 POST_NMS_TOP_N_TRAIN: 1000 PRE_NMS_TOP_N_TEST: 6000 PRE_NMS_TOP_N_TRAIN: 6000 RPN_HEAD: SingleConvRPNHead RPN_MID_CHANNEL: 256 STRADDLE_THRESH: 0 USE_FPN: True RPN_ONLY: False VGG: VGG16_OUT_CHANNELS: 512 WEIGHT: catalog://ImageNetPretrained/FAIR/20171220/X-101-32x8d OUTPUT_DIR: /content/sgdetmodel/ PATHS_CATALOG: /content/Scene/maskrcnn_benchmark/config/paths_catalog.py PATHS_DATA: /content/Scene/maskrcnn_benchmark/config/../data/datasets SOLVER: BASE_LR: 0.01 BIAS_LR_FACTOR: 1 CHECKPOINT_PERIOD: 2000 CLIP_NORM: 5.0 GAMMA: 0.1 GRAD_NORM_CLIP: 5.0 IMS_PER_BATCH: 16 MAX_ITER: 40000 MOMENTUM: 0.9 PRE_VAL: True PRINT_GRAD_FREQ: 4000 SCHEDULE: COOLDOWN: 0 FACTOR: 0.1 MAX_DECAY_STEP: 3 PATIENCE: 2 THRESHOLD: 0.001 TYPE: WarmupReduceLROnPlateau STEPS: (10000, 16000) TO_VAL: True UPDATE_SCHEDULE_DURING_LOAD: False VAL_PERIOD: 2000 WARMUP_FACTOR: 0.1 WARMUP_ITERS: 500 WARMUP_METHOD: linear WEIGHT_DECAY: 0.0001 WEIGHT_DECAY_BIAS: 0.0 TEST: ALLOW_LOAD_FROM_CACHE: False BBOX_AUG: ENABLED: False H_FLIP: False MAX_SIZE: 4000 SCALES: () SCALE_H_FLIP: False CUSTUM_EVAL: True CUSTUM_PATH: /content/image DETECTIONS_PER_IMG: 100 EXPECTED_RESULTS: [] EXPECTED_RESULTS_SIGMA_TOL: 4 IMS_PER_BATCH: 1 RELATION: IOU_THRESHOLD: 0.5 LATER_NMS_PREDICTION_THRES: 0.5 MULTIPLE_PREDS: False REQUIRE_OVERLAP: False SYNC_GATHER: True SAVE_PROPOSALS: False 2020-08-14 07:57:08,699 maskrcnn_benchmark INFO: Collecting env info (might take some time) 2020-08-14 07:57:09,863 maskrcnn_benchmark INFO: PyTorch version: 1.5.0+cu101 Is debug build: No CUDA used to build PyTorch: 10.1
OS: Ubuntu 18.04.3 LTS GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 CMake version: version 3.12.0
Python version: 3.6 Is CUDA available: Yes CUDA runtime version: 10.1.243 GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 418.67 cuDNN version: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5
Versions of relevant libraries: [pip3] numpy==1.18.5 [pip3] torch==1.5.0+cu101 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.3.1 [pip3] torchvision==0.6.0+cu101 [conda] Could not collect Pillow (7.0.0) 2020-08-14 07:57:13,530 maskrcnn_benchmark.data.build INFO: ---------------------------------------------------------------------------------------------------- 2020-08-14 07:57:13,530 maskrcnn_benchmark.data.build INFO: get dataset statistics... 2020-08-14 07:57:13,530 maskrcnn_benchmark.data.build INFO: Loading data statistics from: /content/sgdetmodel/VG_stanford_filtered_with_attribute_train_statistics.cache 2020-08-14 07:57:13,530 maskrcnn_benchmark.data.build INFO: ---------------------------------------------------------------------------------------------------- loading word vectors from /content/glove/glove.6B.200d.pt background -> background fail on background loading word vectors from /content/glove/glove.6B.200d.pt background -> background fail on background 2020-08-14 07:57:18,746 maskrcnn_benchmark.utils.checkpoint INFO: Loading checkpoint from /content/sgdetmodel/model_0028000.pth Traceback (most recent call last): File "tools/relation_test_net.py", line 112, in
main()
File "tools/relation_test_net.py", line 94, in main
data_loaders_val = make_data_loader(cfg, mode="test", is_distributed=distributed)
File "/content/Scene/maskrcnn_benchmark/data/build.py", line 240, in make_data_loader
custom_data_info['ind_to_classes'] = dataset.ind_to_classes
AttributeError: 'VGDataset' object has no attribute 'ind_to_classes'
Traceback (most recent call last):
File "/usr/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "/usr/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.6/dist-packages/torch/distributed/launch.py", line 263, in
main()
File "/usr/local/lib/python3.6/dist-packages/torch/distributed/launch.py", line 259, in main
cmd=cmd)
subprocess.CalledProcessError: Command '['/usr/bin/python3', '-u', 'tools/relation_test_net.py', '--local_rank=0', '--config-file', 'configs/e2e_relation_X_101_32_8_FPN_1x.yaml', 'MODEL.ROI_RELATION_HEAD.USE_GT_BOX', 'False', 'MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL', 'False', 'MODEL.ROI_RELATION_HEAD.PREDICTOR', 'CausalAnalysisPredictor', 'MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE', 'TDE', 'MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE', 'sum', 'MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER', 'motifs', 'TEST.IMS_PER_BATCH', '1', 'DTYPE', 'float16', 'GLOVE_DIR', '/content/glove', 'MODEL.PRETRAINED_DETECTOR_CKPT', '/content/sgdetmodel/', 'OUTPUT_DIR', '/content/sgdetmodel/', 'TEST.CUSTUM_EVAL', 'True', 'TEST.CUSTUM_PATH', '/content/image', 'DETECTED_SGG_DIR', '/content/image']' returned non-zero exit status 1.