Closed github-actions[bot] closed 2 years ago
https://github.com/Kanaries/Rath/blob/d2cabfef63f845df85e23b3d306f6ac455cef76e/services/causal-service/algorithms/causallearn/XLearner.py#L142
anc = [] S = [] G_fd = set() # for (u, v) in background_knowledge.required_rules_specs: # src, dest = NodeId.get(u.get_name(), None), NodeId.get(v.get_name(), None) # if src is None: # src = NodeId[u.get_name()] = cur_id # FDNodes.append(u) # G_fd.add(u.get_attribute('id')) # adj.append(set()) # anc.append(set()) # attr_id.append(u.get_attribute('id')) # cur_id += 1 # if dest is None: # dest = NodeId[v.get_name()] = cur_id # FDNodes.append(v) # G_fd.add(v.get_attribute('id')) # adj.append(set()) # anc.append(set()) # attr_id.append(v.get_attribute('id')) # cur_id += 1 # adj[src].add(dest) # anc[dest].add(src) """ NodeId: Dict[int, int] 原始图中对应点的局域编号 FDNode: List[int]: 在Gfd中的causallearn格式的graphnodes,全局编号 attr_id: Gfd中每个点在原始图中对应的点编号 adj, anc: Gfd的邻接表 G_fd: Gfd中的点集,原图编号 """ for dep in functional_dependencies: if len(dep.params) == 1: # TODO: dep.fid depends only on dep.params[0]: param, f = dep.params[0].fid, dep.fid u, v = f_ind[dep.params[0].fid], f_ind[dep.fid] src, dest = NodeId.get(u, None), NodeId.get(v, None) if src is None: src = NodeId[u] = cur_id node = FCI.GraphNode(f"X{u+1}") node.add_attribute('id', u) G_fd.add(u), adj.append(set()), anc.append(set()), FDNodes.append(node) attr_id.append(u) cur_id += 1 if dest is None: dest = NodeId[v] = cur_id node = FCI.GraphNode(f"X{v+1}") node.add_attribute('id', v) G_fd.add(v), adj.append(set()), anc.append(set()), FDNodes.append(node) attr_id.append(v) cur_id += 1 adj[src].add(dest) anc[dest].add(src) else: # TODO: should be treated the same as bgKnowledge pass topo = toposort(adj) fake_knowledge = BackgroundKnowledge() skeleton_knowledge = set() for t in topo[::-1]: mxvcnt, y = 0, -1 for a in anc[t]: print("a = ", a, attr_id[a]) vcnt = np.unique(dataset[:, attr_id[a]]).size if vcnt > mxvcnt: y = a mxvcnt = vcnt if y == -1: continue # S.append((attr_id[t], attr_id[y])) # fake_knowledge.add_required_by_node(FDNodes[t], FDNodes[y]) fake_knowledge.add_required_by_node(FDNodes[y], FDNodes[t]) skeleton_knowledge.add((attr_id[y], attr_id[t])) # remove X and connected edges from G_FD G_fd.remove(attr_id[t]) for a in anc[t]: adj[a].remove(t) GfdNodes = [] for i, v in enumerate(G_fd): node = FCI.GraphNode(f"X{v + 1}") node.add_attribute("id", v) GfdNodes.append(node) FDgraph, FD_sep_sets = FCI.fas(dataset, GfdNodes, independence_test_method=independence_test_method, alpha=alpha, knowledge=None, depth=depth, verbose=verbose)
Closed in fe41774375c795ea0335014cc8577d8e5c372691
https://github.com/Kanaries/Rath/blob/d2cabfef63f845df85e23b3d306f6ac455cef76e/services/causal-service/algorithms/causallearn/XLearner.py#L142