Open KastanDay opened 1 year ago
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
I created a new branch for my work: main
.
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
1 agents ALL FAILED with runtime exceptions:
Traceback (most recent call last):
File "/Users/kastanday/code/ncsa/ai-ta/ai-ta-backend/ai_ta_backend/agents/github_agent.py", line 148, in bot_runner_with_retries
result = bot.run(f"{run_instruction}")
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 501, in run
return self(args[0], callbacks=callbacks, tags=tags, metadata=metadata)[
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 306, in __call__
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 300, in __call__
self._call(inputs, run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 1141, in _call
next_step_output = self._take_next_step(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 928, in _take_next_step
output = self.agent.plan(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 541, in plan
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 257, in predict
return self(kwargs, callbacks=callbacks)[self.output_key]
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 306, in __call__
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 300, in __call__
self._call(inputs, run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 93, in _call
response = self.generate([inputs], run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 103, in generate
return self.llm.generate_prompt(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 469, in generate_prompt
return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 359, in generate
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 349, in generate
self._generate_with_cache(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 501, in _generate_with_cache
return self._generate(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 360, in _generate
response = self.completion_with_retry(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 299, in completion_with_retry
return _completion_with_retry(**kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 289, in wrapped_f
return self(f, *args, **kw)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 379, in __call__
do = self.iter(retry_state=retry_state)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 314, in iter
return fut.result()
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/concurrent/futures/_base.py", line 451, in result
return self.__get_result()
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result
raise self._exception
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 382, in __call__
result = fn(*args, **kwargs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 297, in _completion_with_retry
return self.client.create(**kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_resources/chat_completion.py", line 25, in create
return super().create(*args, **kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_resources/abstract/engine_api_resource.py", line 155, in create
response, _, api_key = requestor.request(
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 299, in request
resp, got_stream = self._interpret_response(result, stream)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 710, in _interpret_response
self._interpret_response_line(
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 775, in _interpret_response_line
raise self.handle_error_response(
openai.error.InvalidRequestError: This model's maximum context length is 8192 tokens. However, your messages resulted in 17093 tokens. Please reduce the length of the messages.
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
I created a new branch for my work: main
.
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
I created a new branch for my work: main
.
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
1 agents ALL FAILED with runtime exceptions:
Traceback (most recent call last):
File "/Users/kastanday/code/ncsa/ai-ta/ai-ta-backend/ai_ta_backend/agents/github_agent.py", line 148, in bot_runner_with_retries
result = bot.run(f"{run_instruction}")
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 501, in run
return self(args[0], callbacks=callbacks, tags=tags, metadata=metadata)[
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 306, in __call__
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 300, in __call__
self._call(inputs, run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 1141, in _call
next_step_output = self._take_next_step(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 928, in _take_next_step
output = self.agent.plan(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 541, in plan
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 257, in predict
return self(kwargs, callbacks=callbacks)[self.output_key]
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 306, in __call__
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 300, in __call__
self._call(inputs, run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 93, in _call
response = self.generate([inputs], run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 103, in generate
return self.llm.generate_prompt(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 469, in generate_prompt
return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 359, in generate
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 349, in generate
self._generate_with_cache(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 501, in _generate_with_cache
return self._generate(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 360, in _generate
response = self.completion_with_retry(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 299, in completion_with_retry
return _completion_with_retry(**kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 289, in wrapped_f
return self(f, *args, **kw)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 379, in __call__
do = self.iter(retry_state=retry_state)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 314, in iter
return fut.result()
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/concurrent/futures/_base.py", line 451, in result
return self.__get_result()
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result
raise self._exception
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 382, in __call__
result = fn(*args, **kwargs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 297, in _completion_with_retry
return self.client.create(**kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_resources/chat_completion.py", line 25, in create
return super().create(*args, **kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_resources/abstract/engine_api_resource.py", line 155, in create
response, _, api_key = requestor.request(
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 299, in request
resp, got_stream = self._interpret_response(result, stream)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 710, in _interpret_response
self._interpret_response_line(
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 775, in _interpret_response_line
raise self.handle_error_response(
openai.error.InvalidRequestError: This model's maximum context length is 8192 tokens. However, your messages resulted in 20327 tokens. Please reduce the length of the messages.
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
I created a new branch for my work: main
.
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
[Errno 404 Client Error: Not Found for url: https://api.smith.langchain.com/runs/13de474a-0282-4071-8418-441235ea0a4e/share] {"detail":"Resource not found"}
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
I created a new branch for my work: main
.
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
The task requires creating a full command line executable workflow for RNA-Seq on PBMC Samples. The workflow should include
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
I created a new branch for my work: main
.
You can monitor the LangSmith trace here
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
You can monitor the LangSmith trace here.
I created a new branch for my work: main
.
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
You can monitor the LangSmith trace here.
I created a new branch for my work: main
.
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
name 'run_id' is not defined
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
You can monitor the LangSmith trace here.
I created a new branch for my work: main
.
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
You can monitor the LangSmith trace here.
I created a new branch for my work: main
.
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
You can monitor the LangSmith trace here.
I created a new branch for my work: main
.
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
1 agents ALL FAILED with runtime exceptions:
Traceback (most recent call last):
File "/Users/kastanday/code/ncsa/ai-ta/ai-ta-backend/ai_ta_backend/agents/github_agent.py", line 137, in bot_runner_with_retries
result = bot.run(f"{run_instruction}")
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 501, in run
return self(args[0], callbacks=callbacks, tags=tags, metadata=metadata)[
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 306, in __call__
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 300, in __call__
self._call(inputs, run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 1141, in _call
next_step_output = self._take_next_step(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 928, in _take_next_step
output = self.agent.plan(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 541, in plan
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 257, in predict
return self(kwargs, callbacks=callbacks)[self.output_key]
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 306, in __call__
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 300, in __call__
self._call(inputs, run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 93, in _call
response = self.generate([inputs], run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 103, in generate
return self.llm.generate_prompt(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 469, in generate_prompt
return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 359, in generate
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 349, in generate
self._generate_with_cache(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 501, in _generate_with_cache
return self._generate(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 360, in _generate
response = self.completion_with_retry(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 299, in completion_with_retry
return _completion_with_retry(**kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 289, in wrapped_f
return self(f, *args, **kw)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 379, in __call__
do = self.iter(retry_state=retry_state)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 314, in iter
return fut.result()
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/concurrent/futures/_base.py", line 451, in result
return self.__get_result()
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result
raise self._exception
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 382, in __call__
result = fn(*args, **kwargs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 297, in _completion_with_retry
return self.client.create(**kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_resources/chat_completion.py", line 25, in create
return super().create(*args, **kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_resources/abstract/engine_api_resource.py", line 155, in create
response, _, api_key = requestor.request(
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 299, in request
resp, got_stream = self._interpret_response(result, stream)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 710, in _interpret_response
self._interpret_response_line(
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 775, in _interpret_response_line
raise self.handle_error_response(
openai.error.InvalidRequestError: This model's maximum context length is 8192 tokens. However, your messages resulted in 9436 tokens. Please reduce the length of the messages.
Thanks for opening a new issue! I'll now try to finish this implementation and open a PR for you to review.
You can monitor the LangSmith trace here.
I created a new branch for my work: main
.
Feel free to comment in this thread to give me additional instructions, or I'll tag you in a comment if I get stuck. If I think I'm successful I'll 'request your review' on the resulting PR. Just watch for emails while I work.
1 agents ALL FAILED with runtime exceptions:
Traceback (most recent call last):
File "/Users/kastanday/code/ncsa/ai-ta/ai-ta-backend/ai_ta_backend/agents/github_agent.py", line 139, in bot_runner_with_retries
result = bot.with_config({"run_name": "ReAct ML4Bio Agent"}).invoke({"input": run_instruction}, {"metadata": {"run_id_in_metadata": str(run_id_in_metadata)}})
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/schema/runnable/base.py", line 2316, in invoke
return self.bound.invoke(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 84, in invoke
return self(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 306, in __call__
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 300, in __call__
self._call(inputs, run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 1141, in _call
next_step_output = self._take_next_step(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 928, in _take_next_step
output = self.agent.plan(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/agents/agent.py", line 541, in plan
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 257, in predict
return self(kwargs, callbacks=callbacks)[self.output_key]
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 306, in __call__
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/base.py", line 300, in __call__
self._call(inputs, run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 93, in _call
response = self.generate([inputs], run_manager=run_manager)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chains/llm.py", line 103, in generate
return self.llm.generate_prompt(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 469, in generate_prompt
return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 359, in generate
raise e
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 349, in generate
self._generate_with_cache(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/base.py", line 501, in _generate_with_cache
return self._generate(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 360, in _generate
response = self.completion_with_retry(
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 299, in completion_with_retry
return _completion_with_retry(**kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 289, in wrapped_f
return self(f, *args, **kw)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 379, in __call__
do = self.iter(retry_state=retry_state)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 314, in iter
return fut.result()
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/concurrent/futures/_base.py", line 451, in result
return self.__get_result()
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result
raise self._exception
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/tenacity/__init__.py", line 382, in __call__
result = fn(*args, **kwargs)
File "/Users/kastanday/code/ncsa/ai-ta/langchain-improved-agents/libs/langchain/langchain/chat_models/openai.py", line 297, in _completion_with_retry
return self.client.create(**kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_resources/chat_completion.py", line 25, in create
return super().create(*args, **kwargs)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_resources/abstract/engine_api_resource.py", line 155, in create
response, _, api_key = requestor.request(
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 299, in request
resp, got_stream = self._interpret_response(result, stream)
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 710, in _interpret_response
self._interpret_response_line(
File "/Users/kastanday/miniforge3/envs/flask10_py10/lib/python3.10/site-packages/openai/api_requestor.py", line 775, in _interpret_response_line
raise self.handle_error_response(
openai.error.InvalidRequestError: This model's maximum context length is 8192 tokens. However, your messages resulted in 10032 tokens. Please reduce the length of the messages.
Experiment Type: RNA-Seq Sequencing of total cellular RNA
Workflow Management: Bash/SLURM Scripting and job scheduling
Software Stack: FastQC MultiQC STAR RSEM samtools DESeq2
What else to know about the pipeline? I am working PBMC samples collected from patients that are undergoing immunotherapy.
Use the data files existing in Report_WholeBrain as input for this workflow.
You should write a series of bash scripts and R scripts that can accomplish this task. Open a PR with those scripts when you're done.