KeyuWu-CS / MonoHair

Code of MonoHair: High-Fidelity Hair Modeling from a Monocular Video
Other
100 stars 4 forks source link

How do you extract: model_tsfm.dat and model_tsfm_semantic.dat #9

Open LaurentGarcia opened 3 months ago

LaurentGarcia commented 3 months ago

Are there any tool to produce those files?

thanks!

KeyuWu-CS commented 3 months ago

For our provided data, you can directly download, we have aligned it, for your own data, you should set fit_bust=True, then we will fit the flame bust and will get the model_tsfm_semantic.dat in prepare_data.py.

0mil commented 3 months ago

For our provided data, you can directly download, we have aligned it, for your own data, you should set fit_bust=True, then we will fit the flame bust and will get the model_tsfm_semantic.dat in prepare_data.py.

@KeyuWu-CS I encountered the following error white trying your solution in prepare_data.py with the jenya2 dataset you provided. I merely added a line prepare_data: fit_bust: true in configs/reconstruct/jenya2.yaml file Are there any other settings I need to configure for using my own data? Thank you in advance for your answer!

Process ID: 14272
setting configurations...
loading configs/reconstruct/base.yaml...
loading configs/reconstruct/jenya2.yaml...
* HairGenerate:
   * connect_dot_threshold: 0.85
   * connect_scalp: True
   * connect_segments: True
   * connect_threshold: 0.005
   * connect_to_guide: None
   * dist_to_root: 6
   * generate_segments: True
   * grow_threshold: 0.9
   * out_ratio: 0.0
* PMVO:
   * conf_threshold: 0.1
   * filter_point: True
   * genrate_ori_only: None
   * infer_inner: True
   * num_sample_per_grid: 4
   * optimize: True
   * patch_size: 5
   * threshold: 0.05
   * visible_threshold: 1
* bbox_min: [-0.32, -0.32, -0.24]
* bust_to_origin: [0.006, -1.644, 0.01]
* camera_path: camera/calib_data/wky07-22/cam_params.json
* check_strands: True
* cpu: None
* data:
   * Conf_path: conf
   * Occ3D_path: ours/Occ3D.mat
   * Ori2D_path: best_ori
   * Ori3D_path: ours/Ori3D.mat
   * bust_path: Bust/bust_long.obj
   * case: jenya2
   * conf_threshold: 0.4
   * depth_path: render_depth
   * frame_interval: 2
   * image_size: [1920, 1080]
   * mask_path: hair_mask
   * raw_points_path: ours/colmap_points.obj
   * root: data
   * scalp_path: ours/scalp_tsfm.obj
   * strands_path: ours/world_str_raw.dat
* device: cuda:0
* gpu: 0
* image_camera_path: ours/cam_params.json
* infer_inner:
   * render_data: True
   * run_mvs: True
* name: 10-16
* ngp:
   * marching_cubes_density_thresh: 2.5
* output_root: output
* prepare_data:
   * fit_bust: True
   * process_bust: True
   * process_camera: True
   * process_imgs: True
   * render_depth: True
   * run_ngp: True
   * select_images: True
* save_path: refine
* scalp_diffusion: None
* seed: 0
* segment:
   * CDGNET_ckpt: assets/CDGNet/LIP_epoch_149.pth
   * MODNET_ckpt: assets/MODNet/modnet_photographic_portrait_matting.ckpt
   * scene_path: None
* vsize: 0.005
* yaml: configs/reconstruct/jenya2

existing options file found (identical)
distance: 2.254131284488828   
distance: 2.254131284488828   
09:16:02 SUCCESS  Initialized CUDA 11.3. Active GPU is #0: NVIDIA GeForce RTX 4090 [89]
09:16:02 INFO     Loading NeRF dataset from
09:16:02 WARNING    data/jenya2/colmap/base_transform.json does not contain any frames. Skipping.
09:16:02 WARNING    data/jenya2/colmap/cam_params.json does not contain any frames. Skipping.
09:16:02 WARNING    data/jenya2/colmap/base_cam.json does not contain any frames. Skipping.
09:16:02 INFO       data/jenya2/colmap/transforms.json
09:16:02 WARNING    data/jenya2/colmap/key_frame.json does not contain any frames. Skipping.
09:16:03 SUCCESS  Loaded 301 images after 0s
09:16:03 INFO       cam_aabb=[min=[-0.599218,-0.552077,0.784563], max=[2.06055,1.66177,1.41255]]
09:16:04 INFO     Loading network snapshot from: data/jenya2/colmap/base.ingp
09:16:04 INFO     GridEncoding:  Nmin=16 b=2.43803 F=4 T=2^19 L=8
09:16:04 INFO     Density model: 3--[HashGrid]-->32--[FullyFusedMLP(neurons=64,layers=3)]-->1
09:16:04 INFO     Color model:   3--[Composite]-->16+16--[FullyFusedMLP(neurons=64,layers=4)]-->3
09:16:04 INFO       total_encoding_params=12855296 total_network_params=10240
Screenshot transforms from  data/jenya2/colmap/base_transform.json
Generating mesh via marching cubes and saving to data/jenya2/colmap/base.obj. Resolution=[512,512,512], Density Threshold=2.5
09:16:04 INFO     #vertices=4571178 #triangles=9112028
range(0, 16)
rendering data/jenya2/trainning_images/capture_images/000.png
rendering data/jenya2/trainning_images/capture_images/001.png
rendering data/jenya2/trainning_images/capture_images/002.png
rendering data/jenya2/trainning_images/capture_images/003.png
rendering data/jenya2/trainning_images/capture_images/004.png
rendering data/jenya2/trainning_images/capture_images/005.png
rendering data/jenya2/trainning_images/capture_images/006.png
rendering data/jenya2/trainning_images/capture_images/007.png
rendering data/jenya2/trainning_images/capture_images/008.png
rendering data/jenya2/trainning_images/capture_images/009.png
rendering data/jenya2/trainning_images/capture_images/010.png
rendering data/jenya2/trainning_images/capture_images/011.png
rendering data/jenya2/trainning_images/capture_images/012.png
rendering data/jenya2/trainning_images/capture_images/013.png
rendering data/jenya2/trainning_images/capture_images/014.png
rendering data/jenya2/trainning_images/capture_images/015.png
fiting ...

Process ID: 14506
setting configurations...
loading configs/Bust_fit/base.yaml...
loading configs/Bust_fit/jenya2.yaml...
* batch_size: 1
* camera_path: data/jenya2/ours/cam_params.json
* cpu: None
* data:
   * image_size: [1920, 1080]
* device: cuda:0
* gpu: 0
* ignore_existing: None
* isTrain: True
* load_fits: None
* loss:
   * eyed: 2
   * inside_mask: None
   * lipd: 0.5
   * lmk: 1
   * scale_weight: 1
* name: debug
* num_workers: 4
* optimize:
   * data_type: fix_shoulder
   * iter: 10000
   * use_iris: None
   * use_mask: None
   * use_rendering: None
   * vis_step: 100
* output_path: None
* output_root: output
* path: data
* savepath: data
* seed: 0
* smplx:
   * extra_joint_path: assets/data/smplx_extra_joints.yaml
   * face_eye_mask_path: assets/data/uv_face_eye_mask.png
   * face_mask_path: assets/data/uv_face_mask.png
   * flame2smplx_cached_path: assets/data/flame2smplx_tex_1024.npy
   * flame_ids_path: assets/data/SMPL-X__FLAME_vertex_ids.npy
   * flame_vertex_masks_path: assets/data/FLAME_masks.pkl
   * j14_regressor_path: assets/data/SMPLX_to_J14.pkl
   * mano_ids_path: assets/data/MANO_SMPLX_vertex_ids.pkl
   * n_exp: 100
   * n_shape: 300
   * n_tex: 100
   * smplx_model_path: assets/data/SMPLX_NEUTRAL_2020.npz
   * smplx_tex_path: assets/data/smplx_tex.png
   * tex_path: assets/data/FLAME_albedo_from_BFM.npz
   * tex_type: BFM
   * topology_path: assets/data/SMPL_X_template_FLAME_uv.obj
   * uv_size: 512
* subject: jenya2
* subject_path: data/jenya2
* vis: True
* yaml: configs/Bust_fit/jenya2
existing options file found (identical)
Traceback (most recent call last):
  File "/workspace/multiview_optimization.py", line 880, in <module>
    dataset = NerfDataset(args, given_imagepath_list = imagepath_list)
  File "/workspace/multiview_optimization.py", line 102, in __init__
    assert len(self.data) > 0, "Can't find data; make sure you specify the path to your dataset"
AssertionError: Can't find data; make sure you specify the path to your dataset
If you are not running wig hair, please first run bust fitting.
Traceback (most recent call last):
  File "/workspace/prepare_data.py", line 130, in <module>
    shutil.copyfile(os.path.join(args.data.root,'optimize','model_tsfm.dat'),os.path.join(args.data.root,'model_tsfm.dat'))
  File "/usr/lib/python3.10/shutil.py", line 254, in copyfile
    with open(src, 'rb') as fsrc:
FileNotFoundError: [Errno 2] No such file or directory: 'data/jenya2/optimize/model_tsfm.dat'
KeyuWu-CS commented 3 months ago

@0mil Traceback (most recent call last): File "/workspace/multiview_optimization.py", line 880, in dataset = NerfDataset(args, given_imagepath_list = imagepath_list) File "/workspace/multiview_optimization.py", line 102, in init assert len(self.data) > 0, "Can't find data; make sure you specify the path to your dataset" AssertionError: Can't find data; make sure you specify the path to your dataset

Actually, you don't run the fit bust step successfully, after optimization, it will generate "model_tsfm.dat"

0mil commented 3 months ago

@KeyuWu-CS According to the code, to run the fit_bust process, the sample datasets jenya2 and ksyusha1 must include data/jenya2/iris/*.txt and data/jenya2/landmark2d/*.txt files. However, these files are missing. How can I obtain these *.txt files to run with own dataset?

KeyuWu-CS commented 3 months ago

Sorry, I forget I comment the code for data process in multiview_optimization.py(Line 868). After execute this step, it will generate landmark and iris.

0mil commented 3 months ago

Sorry, I forget I comment the code for data process in multiview_optimization.py(Line 868). After execute this step, it will generate landmark and iris.

From what I understand, the data processing in multiview_optimization.py(Line 868) should not be commented when running my own dataset. Is that correct? It works smoothly! Thank you for answering!

LaurentGarcia commented 3 months ago

in my case after remove the comment in Multiview :

existing options file found (identical) name: VA_Hair_Footage1stTry Traceback (most recent call last): File "C:\Users\Lauren\Documents\Source\MonoHair\multiview_optimization.py", line 880, in dataset = NerfDataset(args, given_imagepath_list = imagepath_list) File "C:\Users\Lauren\Documents\Source\MonoHair\multiview_optimization.py", line 102, in init assert len(self.data) > 0, "Can't find data; make sure you specify the path to your dataset" AssertionError: Can't find data; make sure you specify the path to your dataset If you are not running wig hair, please first run bust fitting. Traceback (most recent call last): File "C:\Users\Lauren\Documents\Source\MonoHair\prepare_data.py", line 130, in shutil.copyfile(os.path.join(args.data.root,'optimize','model_tsfm.dat'),os.path.join(args.data.root,'model_tsfm.dat')) File "C:\Users\Lauren\miniconda3\envs\MonoHair\lib\shutil.py", line 254, in copyfile with open(src, 'rb') as fsrc: FileNotFoundError: [Errno 2] No such file or directory: 'data\VA_Hair_Footage1stTry\optimize\model_tsfm.dat'

seem like the directory is adding not correct?

LaurentGarcia commented 3 months ago

Any idea? :)

0mil commented 3 months ago

in my case after remove the comment in Multiview :

existing options file found (identical) name: VA_Hair_Footage1stTry Traceback (most recent call last): File "C:\Users\Lauren\Documents\Source\MonoHair\multiview_optimization.py", line 880, in dataset = NerfDataset(args, given_imagepath_list = imagepath_list) File "C:\Users\Lauren\Documents\Source\MonoHair\multiview_optimization.py", line 102, in init assert len(self.data) > 0, "Can't find data; make sure you specify the path to your dataset" AssertionError: Can't find data; make sure you specify the path to your dataset If you are not running wig hair, please first run bust fitting. Traceback (most recent call last): File "C:\Users\Lauren\Documents\Source\MonoHair\prepare_data.py", line 130, in shutil.copyfile(os.path.join(args.data.root,'optimize','model_tsfm.dat'),os.path.join(args.data.root,'model_tsfm.dat')) File "C:\Users\Lauren\miniconda3\envs\MonoHair\lib\shutil.py", line 254, in copyfile with open(src, 'rb') as fsrc: FileNotFoundError: [Errno 2] No such file or directory: 'data\VA_Hair_Footage1stTry\optimize\model_tsfm.dat'

seem like the directory is adding not correct?

@LaurentGarcia I think that you need to double-check the path of your own dataset. Additionally, you must keep the directory structure rigorously. In my case, I referred to another sample dataset's directory like jenya2 and I didn't encounter this error!

KeyuWu-CS commented 3 months ago

@LaurentGarcia Sorry for later respond. model_tsfm.dat will be generated when fit_bust set to True. It will generate a SMPLX model fit with images. You must ensure the mulitview optimization run successfully. In you error info. Some error happened in this step, please check. You can refer the answer.