KindXiaoming / pykan

Kolmogorov Arnold Networks
MIT License
15.14k stars 1.41k forks source link

Adam Optimizer problem #288

Open JonathanZha47 opened 5 months ago

JonathanZha47 commented 5 months ago

Is that meaning using Adam optimizer is not converge? Or there is other issue with the code. Below is the code and error: loader2 = {'train_input': train_X1, 'train_label': train_Y1, 'test_input': test_X1, 'test_label': test_Y1} KAN_model2 = KAN(width=[17,5,5,3,3,1], seed=0) KAN_model2.train(loader2,opt="Adam") I think the input dimension is working perfectly fine since i'm doing the same params and input using LBFGS

RuntimeError Traceback (most recent call last) Cell In[69], line 4 2 loader2 = {'train_input': train_X1, 'train_label': train_Y1, 'test_input': test_X1, 'test_label': test_Y1} 3 KAN_model2 = KAN(width=[17,5,5,3,3,1], seed=0) ----> 4 KAN_model2.train(loader2,opt="Adam")

File env/lib/python3.8/site-packages/kan/KAN.py:898, in KAN.train(self, dataset, opt, steps, log, lamb, lamb_l1, lamb_entropy, lamb_coef, lamb_coefdiff, update_grid, grid_update_num, loss_fn, lr, stop_grid_update_step, batch, small_mag_threshold, small_reg_factor, metrics, sglr_avoid, save_fig, in_vars, out_vars, beta, save_fig_freq, img_folder, device) 895 test_id = np.random.choice(dataset['test_input'].shape[0], batch_sizetest, replace=False) 897 if % grid_updatefreq == 0 and < stop_grid_update_step and update_grid: --> 898 self.update_grid_from_samples(dataset['train_input'][train_id].to(device)) 900 if opt == "LBFGS": 901 optimizer.step(closure)

File ~/Desktop/PINN4SOH/KANPINN-env/lib/python3.8/site-packages/kan/KAN.py:244, in KAN.update_grid_from_samples(self, x) 242 for l in range(self.depth): 243 self.forward(x) --> 244 self.act_fun[l].update_grid_from_samples(self.acts[l])

File env/lib/python3.8/site-packages/kan/KANLayer.py:218, in KANLayer.update_grid_from_samples(self, x) 216 grid_uniform = torch.cat([grid_adaptive[:, [0]] - margin + (grid_adaptive[:, [-1]] - grid_adaptive[:, [0]] + 2 margin) a for a in np.linspace(0, 1, num=self.grid.shape[1])], dim=1) 217 self.grid.data = self.grid_eps grid_uniform + (1 - self.grid_eps) grid_adaptive --> 218 self.coef.data = curve2coef(x_pos, y_eval, self.grid, self.k, device=self.device)

File env/lib/python3.8/site-packages/kan/spline.py:137, in curve2coef(x_eval, y_eval, grid, k, device) ... [136]env/lib/python3.8/site-packages/kan/spline.py:136) mat = B_batch(x_eval, grid, k, device=device).permute(0, 2, 1) --> 137 coef = torch.linalg.lstsq(mat.to('cpu'), y_eval.unsqueeze(dim=2).to('cpu')).solution[:, :, 0] # sometimes 'cuda' version may diverge 138 return coef.to(device)

KindXiaoming commented 4 months ago

torch.linalg.lstsq may diverge, regardless of whether you're using LBFGS or Adam. Please check if your data has a column which is the same (or nearly the same) for all samples.