Kinpzz / Deep-Learning-on-Medical-Image

some materials about deep learning on medical image like x-rays, MRI, CT
32 stars 15 forks source link

Paper Notes #8

Open Kinpzz opened 7 years ago

Kinpzz commented 7 years ago

ChestX-ray8

ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks(标杆) on Weakly-Supervised(弱监督) Classification and Localization of Common Thorax(胸部) Diseases

Keyword

弱监督:没有基于像素标记的训练图像,只有基于图像类别标签的图像, image-level class labels only

Background

Mordern hospitals' PACS(Picture Archiving and Communication Systems) has a tremendous number of X-ray imaging studies accompanied by radiological reports(ie. loosely labeled). Open question: How this type of hospital-size Knowledge database --used for-> large-scale high precision computer-aided diagnosis(CAD) systems.

State-of-the-art object dection and segmentation

Dataset

Main limitation of recent notable work

All proposed methods are eavaluated on some small-to-middle scale problems of (at most) several hunders patients. The performance of deep learning techniques remians unclear when it scales up to tens of thousands of patient sudies. 目前研究的不足:样本量偏小,数据稀缺

Related Work

There have been recent efforts on creating openly available annotated medical image database.

Motivation

  1. Generic, opened iamge-level anatomy and pathology labels cannot be obtained through crowd-sourcing, such as AMT(Amazon Mechanical Turk) 无医学背景的标注者无法标注医学图像标签,所以使用NLP结合image和reports 提取标签。
  2. The spatial dimensions of an chest X-ray are usually 2000x3000 pixels. 但是局部病理图片区域大小差异大,且相对于原图片很小。对此,本文提出了一种弱监督多标签分类和定位的框架来解决这个困难。
  3. 医学图像诊断不适合直接使用ImageNet pre-trained DCNN model来fine-tune,因此需要建立弱监督医学图像数据库并学习recognition和localization。

Main Work

Construting Database

ChestX-ray8

Labeling Disease Names by Text Mining(标签提取)

Tools

Noise(上述工具存在噪声问题)

Eliminate noisy labeling by ruling out negated pathological statements(否认形式的陈述) and uncertain mentions of findings and diseases, e.g., "suggesting obstructive lung disease". Use regular expression can not capture various syntatic constructions for multiple subjects. for example, "clear of A and B" -> A as a negation but not B.

Improvement: syntactic level, utilize the syntactic dependency information. Define rules on the dependency graph, by utilizing the dependency label and direction information between words. 相比于之前Tools的改进:

Steps
  1. split and tokenize the reports into sentences using NLTK.
  2. parse each sentence by Bllip parser using David McCloskys biomedical model.
  3. the syntactic dependencies are obtained from "CCProcesed" dependencies output by applying Stanford dependencies converter on the parse tree.

Quality Control

Using OpenI API, retrieve a total of 3851 unique radiology reports for validation. Performance相比于MetaMap有较大的提升

Processing Chest X-ray Images

Bouding Box for Pathologies

Unified DCNN Framework

通过卷积层运算把不同的pre-trained model转换为$S \times S \times D$的输出。

Multi-label Classification Loss Layer

在损失函数中加入了对正负样本均衡性的考虑。

Global Pooling Layer

采用了全局池化层代替全连接层和softmax层,减少参数量,防止过拟合。并且设计了一个全局最大池化层和全局LSE池化层结合的方案,max和ave之间权衡。

prediction layer

预测层将全局池化层的输出转换为$1 \times C$ 维度。并利用ROC曲线进行不同阈值效果的筛选。 ROC参考:http://blog.csdn.net/pipisorry/article/details/51788927?locationNum=1&fps=1 http://blog.csdn.net/taoyanqi8932/article/details/54409314?locationNum=5&fps=1

Heat map

![Figure 4]()

Experiments

CNN

Performance

ROC

Kinpzz commented 7 years ago

SCAN

Introduction

本文主要是一篇关于对双肺和心脏进行语义分割的论文,作者认为器官语义分割是针对胸片(CXR)构建计算机辅助诊断系统的重要一步,器官的区域提供了丰富的结构信息,可用于诊断许多病症。而目前胸片又因辐射小、花费低,而十分普遍,给放射科工作者带来了巨大的工作量。所以本文的研究具有现实意义。同时该研究也存在着巨大的挑战,CXR为2d灰度图片,且目前公开数据集数据量很少(多只有几百张),无法直接应用在大规模数据集上训练好的网络模型。作者据此提出了SCAN框架,该模型采用了GAN(生成对抗网络)的思想,包含了一个分割网络(segmentation network)和一个判别网络(critic network),采用零和博弈的思想,在公开数据集JSRT和Montgomery上进行单独交替训练。这两个网络都是一个复杂的神经网络,包含FCN、和VGG-based(VGG基础上进行修改)、残差块(residual block)。这是一个数据依赖性小(不依赖大规模数据)、参数量小的模型,取得了一个高准确率(人类专家水平)、高效率(<1s)、迁移性强(泛化能力强)的结果,超过该研究领域的state-of-the-art Registration-based approach。

Keyword

Main Work

Challenge

Related Work

Lung Field Segmentation

Categories

  1. Rule-based systems apply pre-defined set of thresholding and morphological operations that are derived from heuristics.
  2. Pixel classification methods classify the pixels as inside or outside of the lung fields based on pixel intensities.(像素分类)
  3. Based on deformable(可变形) models such as Active Shape Model (ASM) and Active Appearance Model.

Current state-of-the-art

Registration-based approach: to build a lung model for a test patient, finds patients in an existing database that are most similar to the test patient and perform linear deformation of their lung profiles based on key point matching.(比较法;关键点匹配)

Semantic Segmentation with Convolutional Networks

Aims to assign a pre-defined class to each pixel

Current state-of-the art

We note that there is a growing body of recent works that apply neural networks end-to-end on CXR images [25, 34]. These models directly output clinical targets such as disease labels without well-defined intermediate outputs to aid interpretability. Furthermore, they generally require a large number of CXR images for training, which is not readily available for many clinical tasks involving CXR images.(目前一些成果的不足:结果未输出辅助性中间结果,直接输出标签,且需要大量训练数据)

Problem Definition

Structure Correcting Adversarial Network (SCAN)

Authors adapt FCNs to gray-scale CXR images uder the stringent constraint of very limited trainning dataset of 247 images. It departs from the usual VGG architecture and can be trained without transfer learning from existing models or dataset.(论文方法:FCN+对抗网络,仅需要少量训练数据,不依赖现有模型或数据库)

Adversarial Training for Smeantic Segmentation

GAN

Adversarial trainning was first proposed in Generative Adversarial Network (GAN)

Use the critic to learn these higher order structures and guide the segmentation network to generate masks more consistent with the learned global structures.

![figure3]()

Training Objectives

Data

上述公式可以拆分为下面两个阶段:

Trainning the Critic

Train the critic network by minimizing the following objective with respect to $D$ for a fixed $S$: $$ \sum_{i=1}[J_d(D(x_i, y_i), 1) + J_d(D(x_i, S(x_i)),0) $$ 相比于Eq(1) 优化公式,少了负号,所以变成了最小化问题。

Trainning the Segmentation Network

Given a fixed D, we train the segmentation network by minimizing hte following objective with respect to $S$: $$ \sum_{i=1}^N J_s(S(x_i),y_i) + \lambda J_d(D(x_i,S(x_i)),0)$$

参考

Segmentation Network

FCN

Critic Network

Experiments

Dataset and Processing

Dataset

Use two publicly available dataset with at least lung field annotations.

JSRT

Montgomery

Processing

Training Protocols

Experiment Design and Result

Design

Reference

Kinpzz commented 7 years ago

数学理论参考