Kowsher / LLMMixer

Apache License 2.0
18 stars 5 forks source link

Reproducing Results are different from those reported in the paper. #4

Open tangjialiang97 opened 15 hours ago

tangjialiang97 commented 15 hours ago

I encountered some issues while attempting to reproduce the results presented in the paper. I used the code and parameter settings provided in the public repository, but the results I obtained differ significantly from those reported in your paper. I would like to seek your guidance in understanding any potential reasons for this discrepancy and any specific settings or adjustments that might help me achieve comparable results

Reproduce results: Seq_len Pred_len Data Mse Mae
96 96 ETTh1 0.3935 0.412
96 192 ETTh1 0.4578 0.4441
96 384 ETTh1 0.4998 0.4618
96 720 ETTh1 0.4974 0.4722
Mean 0.4621 0.4475

Training setting: model_name=LLMMixer

seq_len=96 e_layers=2 down_sampling_layers=3 down_sampling_window=2 learning_rate=0.0001 d_model=16 d_ff=32 train_epochs=20 patience=100 batch_size=128 learning_rate=0.001 pred_len=96 { python3 run.py \ --task_name long_term_forecast \ --is_training 1 \ --root_path /hss/giil/temp/data/all_six_datasets/ETT-small/ \ --data_path ETTh1.csv \ --modelid ETTh1$seqlen''96 \ --model $model_name \ --data ETTh1 \ --features M \ --seq_len $seq_len \ --label_len 0 \ --pred_len 96 \ --e_layers $e_layers \ --enc_in 7 \ --c_out 7 \ --des 'Exp' \ --itr 1 \ --d_model $d_model \ --d_ff $d_ff \ --learning_rate $learning_rate \ --train_epochs $train_epochs \ --patience $patience \ --batch_size $batch_size \ --learning_rate $learning_rate \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window } sleep 1 wait { python3 run.py \ --task_name long_term_forecast \ --is_training 1 \ --root_path /hss/giil/temp/data/all_six_datasets/ETT-small/ \ --data_path ETTh1.csv \ --modelid ETTh1$seqlen''192 \ --model $model_name \ --data ETTh1 \ --features M \ --seq_len $seq_len \ --label_len 0 \ --pred_len 192 \ --e_layers $e_layers \ --enc_in 7 \ --c_out 7 \ --des 'Exp' \ --itr 1 \ --d_model $d_model \ --d_ff $d_ff \ --learning_rate $learning_rate \ --train_epochs $train_epochs \ --patience $patience \ --batch_size $batch_size \ --learning_rate $learning_rate \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window } sleep 1 wait { python3 run.py \ --task_name long_term_forecast \ --is_training 1 \ --root_path /hss/giil/temp/data/all_six_datasets/ETT-small/ \ --data_path ETTh1.csv \ --modelid ETTh1$seqlen''384 \ --model $model_name \ --data ETTh1 \ --features M \ --seq_len $seq_len \ --label_len 0 \ --pred_len 384 \ --e_layers $e_layers \ --enc_in 7 \ --c_out 7 \ --des 'Exp' \ --itr 1 \ --d_model $d_model \ --d_ff $d_ff \ --learning_rate $learning_rate \ --train_epochs $train_epochs \ --patience $patience \ --batch_size $batch_size \ --learning_rate $learning_rate \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window } sleep 1 wait { python3 run.py \ --task_name long_term_forecast \ --is_training 1 \ --root_path /hss/giil/temp/data/all_six_datasets/ETT-small/ \ --data_path ETTh1.csv \ --modelid ETTh1$seqlen''720 \ --model $model_name \ --data ETTh1 \ --features M \ --seq_len $seq_len \ --label_len 0 \ --pred_len 720 \ --e_layers $e_layers \ --enc_in 7 \ --c_out 7 \ --des 'Exp' \ --itr 1 \ --d_model $d_model \ --d_ff $d_ff \ --learning_rate $learning_rate \ --train_epochs $train_epochs \ --patience $patience \ --batch_size $batch_size \ --learning_rate $learning_rate \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window } sleep 1 wait

tangjialiang97 commented 14 hours ago
We further conduct experiments on ETTh2 dataset and the LLM is RoBERTa-base. However, the results are still inconsistent with those reported in the paper. Seq_len Pred_len Data Mse Mae
96 96 ETTh2 0.3143 0.3612
96 192 ETTh2 0.39 0.4062
96 384 ETTh2 0.4157 0.4326
96 720 ETTh2 0.4311 0.4456
Mean 0.3877 0.4114
Reported in the paper 0.349 0.395