KrishnaswamyLab / SAUCIE

Other
98 stars 29 forks source link

Problem with Preparing the data #33

Open caiquanyou opened 4 years ago

caiquanyou commented 4 years ago

In the 02_Exploratory_analysis_of_single_cell_data_with_SAUCIE.ipynb example, i run it and get some error issues below: 'data = pca_op.fit_transform(data_raw)' TypeError Traceback (most recent call last)

in 1 pca_op = sklearn.decomposition.PCA(100) ----> 2 data = pca_op.fit_transform(data_raw) 3 data /usr/local/lib/python3.6/dist-packages/sklearn/decomposition/_pca.py in fit_transform(self, X, y) 374 C-ordered array, use 'np.ascontiguousarray'. 375 """ --> 376 U, S, V = self._fit(X) 377 U = U[:, :self.n_components_] 378 /usr/local/lib/python3.6/dist-packages/sklearn/decomposition/_pca.py in _fit(self, X) 396 397 X = self._validate_data(X, dtype=[np.float64, np.float32], --> 398 ensure_2d=True, copy=self.copy) 399 400 # Handle n_components==None /usr/local/lib/python3.6/dist-packages/sklearn/base.py in _validate_data(self, X, y, reset, validate_separately, **check_params) 418 f"requires y to be passed, but the target y is None." 419 ) --> 420 X = check_array(X, **check_params) 421 out = X 422 else: /usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py in inner_f(*args, **kwargs) 70 FutureWarning) 71 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)}) ---> 72 return f(**kwargs) 73 return inner_f 74 /usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator) 576 dtype=dtype, copy=copy, 577 force_all_finite=force_all_finite, --> 578 accept_large_sparse=accept_large_sparse) 579 else: 580 # If np.array(..) gives ComplexWarning, then we convert the warning /usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py in _ensure_sparse_format(spmatrix, accept_sparse, dtype, copy, force_all_finite, accept_large_sparse) 351 352 if accept_sparse is False: --> 353 raise TypeError('A sparse matrix was passed, but dense ' 354 'data is required. Use X.toarray() to ' 355 'convert to a dense numpy array.') TypeError: A sparse matrix was passed, but dense data is required. Use X.toarray() to convert to a dense numpy array. I wonder how to fix this problem?