Open kayleeliyx opened 1 month ago
Hello. They have a script for Zero-Shot evaluation in their ReadMe file for Zero-Shot evaluation with ESC50. Also, the 'supervised' part comes from having some examples known to get some of the embeddings.
Adding the code for your convenience.
import laion_clap
import glob
import json
import torch
import numpy as np
device = torch.device('cuda:0')
# download https://drive.google.com/drive/folders/1scyH43eQAcrBz-5fAw44C6RNBhC3ejvX?usp=sharing and extract ./ESC50_1/test/0.tar to ./ESC50_1/test/
esc50_test_dir = './ESC50_1/test/*/'
class_index_dict_path = './class_labels/ESC50_class_labels_indices_space.json'
# Load the model
model = laion_clap.CLAP_Module(enable_fusion=False, device=device)
model.load_ckpt()
# Get the class index dict
class_index_dict = {v: k for v, k in json.load(open(class_index_dict_path)).items()}
# Get all the data
audio_files = sorted(glob.glob(esc50_test_dir + '**/*.flac', recursive=True))
json_files = sorted(glob.glob(esc50_test_dir + '**/*.json', recursive=True))
ground_truth_idx = [class_index_dict[json.load(open(jf))['tag'][0]] for jf in json_files]
with torch.no_grad():
ground_truth = torch.tensor(ground_truth_idx).view(-1, 1)
# Get text features
all_texts = ["This is a sound of " + t for t in class_index_dict.keys()]
text_embed = model.get_text_embedding(all_texts)
audio_embed = model.get_audio_embedding_from_filelist(x=audio_files)
ranking = torch.argsort(torch.tensor(audio_embed) @ torch.tensor(text_embed).t(), descending=True)
preds = torch.where(ranking == ground_truth)[1]
preds = preds.cpu().numpy()
metrics = {}
metrics[f"mean_rank"] = preds.mean() + 1
metrics[f"median_rank"] = np.floor(np.median(preds)) + 1
for k in [1, 5, 10]:
metrics[f"R@{k}"] = np.mean(preds < k)
# map@10
metrics[f"mAP@10"] = np.mean(np.where(preds < 10, 1 / (preds + 1), 0.0))
print(
f"Zeroshot Classification Results: "
+ "\t".join([f"{k}: {round(v, 4):.4f}" for k, v in metrics.items()])
)
Essentially you download the pretrained models from the linkes available, load them following this code and then use the functions get_audio_embedding_from_data for your audio and get_text_embedding for your text and use some kind of distance between the embeddings generated.
Hi everyone! I am sorry that I just started this project and I am new to this topic. I am wondering where the code for supervised audio classification is. I just saw zero-shot learning. Thanks!