Closed escorciav closed 3 weeks ago
not big deal. One can dispatch a bash/whatever script along these lines:
#!/bin/bash
# Define the model and pretrained settings
model="ViT-B-16"
model_name=vitb16
pretrained="laion400m_e32"
dataset_root="/home/SERILOCAL/v.castillo/datasets/coco"
# SugarCrepe the tasks
tasks=("add_att" "add_obj" "replace_att" "replace_obj" "replace_rel" "swap_att" "swap_obj")
for task in "${tasks[@]}"
do
# Construct the dataset and output paths
dataset="sugar_crepe/$task"
output="${model_name}_sugarcrepe-$task.json"
# Run the command
clip_benchmark eval --model $model --pretrained $pretrained --dataset=$dataset --output=$output --dataset_root $dataset_root
done
then ask a llm to merge them :laughing: . Perhaps the clip even merge json. Getting familiar with it atm :blush: Thanks for putting this together :love_you_gesture:
my bad it's related to the output using template along these lines should fix it --output='out_{dataset}.json'
cc @mehdidc
There is an issue dumping results for all the tasks/subsets of sugarcrepe output json, no?
It runs over all the split but only retain results for
sugar_crepe/swap_obj
$ clip_benchmark ce_rel', 'sugar_crepe/swap_att', 'sugar_crepe/swap_obj'] Languages: ['en'] Running 'image_caption_selection' on 'sugar_crepe/add_att' with the model 'laion400m_e32' on language 'en' Dataset size: 692 Dataset split: test 0%| | 0/11 [00:00<?, ?it/s]/home/SERILOCAL/v.castillo/projects/genai-research/clip-benchmark/clip_benchmark/metrics/image_caption_selection.py:55: FutureWarning:
torch.cuda.amp.autocast(args...)
is deprecated. Please usetorch.amp.autocast('cuda', args...)
instead. with torch.no_grad(), autocast(): 100%|██████████████████████████████████████████████████████████| 11/11 [00:02<00:00, 5.36it/s] Dump results to: vitb16_sugarcrepe.json Running 'image_caption_selection' on 'sugar_crepe/add_obj' with the model 'laion400m_e32' on language 'en' Dataset size: 2062 Dataset split: test 100%|██████████████████████████████████████████████████████████| 33/33 [00:04<00:00, 6.94it/s] Dump results to: vitb16_sugarcrepe.json Running 'image_caption_selection' on 'sugar_crepe/replace_att' with the model 'laion400m_e32' on language 'en' Dataset size: 788 Dataset split: test 100%|██████████████████████████████████████████████████████████| 13/13 [00:02<00:00, 6.06it/s] Dump results to: vitb16_sugarcrepe.json Running 'image_caption_selection' on 'sugar_crepe/replace_obj' with the model 'laion400m_e32' on language 'en' Dataset size: 1652 Dataset split: test 100%|██████████████████████████████████████████████████████████| 26/26 [00:04<00:00, 6.15it/s] Dump results to: vitb16_sugarcrepe.json Running 'image_caption_selection' on 'sugar_crepe/replace_rel' with the model 'laion400m_e32' on language 'en' Dataset size: 1406 Dataset split: test 100%|██████████████████████████████████████████████████████████| 22/22 [00:03<00:00, 6.07it/s] Dump results to: vitb16_sugarcrepe.json Running 'image_caption_selection' on 'sugar_crepe/swap_att' with the model 'laion400m_e32' on language 'en' Dataset size: 666 Dataset split: test 100%|██████████████████████████████████████████████████████████| 11/11 [00:02<00:00, 5.28it/s] Dump results to: vitb16_sugarcrepe.json Running 'image_caption_selection' on 'sugar_crepe/swap_obj' with the model 'laion400m_e32' on language 'en' Dataset size: 245 Dataset split: test 100%|████████████████████████████████████████████████████████████| 4/4 [00:01<00:00, 3.82it/s] Dump results to: vitb16_sugarcrepe.json